高中數學教案簡單
教案是指教學活動的計劃和組織安排,包括教學目標、教學內容、教學方法、教學資源、評價方式等方面的設計。好的高中數學教案簡單應該怎么寫?快來看看,小編給大家分享高中數學教案簡單的寫作技巧和示例,供大家參考!
高中數學教案簡單篇1
教學目標
知識與技能目標:
本節的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:
(1) 通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。
(2) 從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3) 依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:
導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k
在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。
過程與方法目標:
(1) 學生通過觀察感知、動手探究,培養學生的動手和感知發現的能力。
(2) 學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。
(3) 結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發現新知、應用新知。
情感、態度、價值觀:
(1) 通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;
(2) 在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態度方面得到良好的發展。
教學重點與難點
重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。
難點:發現、理解及應用導數的幾何意義。
教學過程
一、復習提問
1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.
定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。
求導數的步驟:
第一步:求平均變化率導數的幾何意義教案;
第二步:求瞬時變化率導數的幾何意義教案.
(即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)
2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案 在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案
師:這就是平均變化率(導數的幾何意義教案)的幾何意義,
3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.
導數的幾何意義教案
追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。
由導數的定義知導數的幾何意義教案 導數的幾何意義教案。
導數的幾何意義教案
由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f'(x0).今天我們就來探究導數的幾何意義。
C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.
二、新課
1、導數的幾何意義:
函數y=f(x)在點x0處的導數f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.
即:導數的幾何意義教案
口答練習:
(1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。
(C層學生做)
(2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)
導數的幾何意義教案
2、如何用導數研究函數的增減?
小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。
同時,結合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。
例1 函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。
導數的幾何意義教案
函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)
3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.
例2 求曲線y=x2在點M(2,4)處的切線方程.
解:導數的幾何意義教案
∴y'|x=2=2×2=4.
∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數y=f(x)在點x0處的導數f'(x0).
(2)根據直線方程的點斜式,得切線方程為 y-y0=f'(x0)(x-x0).
提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)
(先由C類學生來回答,再由A,B補充.)
例3 已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;
(2)過P點的切線的方程。
解:(1)導數的幾何意義教案,
導數的幾何意義教案
y'|x=2=22=4. ∴ 在點P處的切線的斜率等于4.
(2)在點P處的切線方程為導數的幾何意義教案 即 12x-3y-16=0.
練習:求拋物線y=x2+2在點M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學生做題,A類學生糾錯。
三、小結
1.導數的幾何意義.(C組學生回答)
2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.
(B組學生回答)
四、布置作業
1. 求拋物線導數的幾何意義教案在點(1,1)處的切線方程。
2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.
3. 求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;
(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)
教學反思:
本節內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。
本節課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數 的幾何意義解釋實際問題”兩個教學重心展開。 先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。
完成本節課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。 本節課注重以學生為主體,每一個知識、每一個發現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業看來,效果較好。
高中數學教案簡單篇2
一、教學目標
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養學生觀察能力、抽象概括能力及創新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯想的方法,領會方程、數形結合等思想。
(三)情感態度價值觀
1、感受動點軌跡的動態美、和諧美、對稱美
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣
二、教學重點與難點
教學重點:運用類比、聯想的方法探究不同條件下的軌跡
教學難點:圖形、文字、符號三種語言之間的過渡
三、、教學方法和手段
【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。
【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。
【教學模式】重點中學實施素質教育的課堂模式"創設情境、激發情感、主動發現、主動發展"。
四、教學過程
1、創設情景,引入課題
生活中我們四處可見軌跡曲線的影子
【演示】這是美麗的城市夜景圖
【演示】許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多
【演示】建筑中也有許多美麗的軌跡曲線
設計意圖:讓學生感受數學就在我們身邊,感受軌跡曲線的動態美、和諧美、對稱美,激發學習興趣。
2、激發情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1;
例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。
第一步:讓學生借助畫板動手驗證軌跡
第二步:要求學生求出軌跡方程
法一:設,則
由得,
化簡得
法二:設,由得
化簡得
法三:設, 由點到定點的距離等于定長,
根據圓的定義得;
第三步:復習求軌跡方程的一般步驟
(1)建立適當的坐標系
(2)設動點的坐標M(x,y)
(3)列出動點相關的約束條件p(M)
(4)將其坐標化并化簡,f(x,y)=0
(5)證明
其中,最關鍵的一步是根據題意尋求等量關系,并把等量關系坐標化
設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。
3、主動發現、主動發展
由上述例1可知,如果人站在梯子中間,則他會劃了一段優美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結果會怎樣呢?讓學生動手探究M不是中點時的軌跡。
第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起)
設計意圖:借助數學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發現疑問,更容易激發學生學習的熱情,促使他們主動學習。
第二步:分解動作,向學生提出3個問題:
問題1:當M位置不同時,線段BM與MA的大小關系如何?
問題2、體現BM與MA大小關系還有什么常見的形式?
問題3、你能類比例1把這種數量關系表達出來嗎?
第三步:展示學生歸納、概括出來的數學問題
1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。
2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。
3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)
第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成
4、合作探究、實現創新
改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)
學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。
5、布置作業、實現拓展
1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。
2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。
3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。
4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。
以下是學生課后探究得到的一些軌跡圖形
課后有學生問,如果X軸和Y軸不垂直會有什么結果?定長的線段在上面滑動怎么做出來?
可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。
以下是X軸和Y軸不垂直時的軌跡圖形
五、教學設計說明:
(一)、教材
《平面動點的軌跡》是高二一節探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數形結合的思想等,是中學數學的重要內容,也是歷年高考數學考查的重點之一。
(二)、校情、學情
校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完善,每間教室都具備多媒體教學的功能,另外有兩間網絡教室和一個學生電子閱室,并且能隨時上網。
學情:大部分學生家里都有電腦,而且能隨時上網。對學生進行了幾何畫板基本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉換還存在很大的差異,在合作交流意識方面,發展不均衡,有待加強。
(三)學法
觀察、實驗、交流、合作、類比、聯想、歸納、總結
(四)、教學過程
1、創設情景,引入課題
2、激發情感,引導探索
由梯子滑落問題抽象、概括出數學問題
第一步:讓學生借助畫板動手驗證軌跡
第二步:要求學生求出軌跡方程
第三步:復習求軌跡方程的一般步驟
3、主動發現、主動發展
探究M不是中點時的軌跡
第一步:利用網絡平臺展示學生得到的軌跡
第二步:分解動作,向學生提出3個問題:
第三步:展示學生歸納、概括出來的數學問題
4、合作探究、實現創新
改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)
學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。
5、布置作業、實現拓展
(五)、教學特色:
借助網絡、多媒體教學平臺,讓學生自己動手實驗,發現問題并解決問題,同時把學生的學習情況及時的展現出來,做到大家一起學習,一起評價的效果。同時節省了時間,提高了課堂效率。
整個教學過程,體現了四個統一:既學習書本知識與投身實踐的統一、書本學習與現代信息技術學習的統一、書本知識與資源拓展的統一、課堂學習與課外實踐的統一。
本節課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產生一些爭執,給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。
高中數學教案簡單篇3
各位老師:
大家好!
我叫______,來自____。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。
2.教學的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉化成古典概型。
二、教學目標分析
1.知識與技能目標
(1)通過試驗理解基本事件的概念和特點
(2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。
2、過程與方法:
經歷公式的推導過程,體驗由特殊到一般的數學思想方法。
3、情感態度與價值觀:
(1)用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。
(2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。
三、教法與學法分析
1、教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
2、學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度。
㈠創設情景、引入新課
在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]
「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。
㈡思考交流、形成概念
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。
「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點
觀察對比,發現兩個模擬試驗和例1的共同特點:
讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。
[經概括總結后得到:
(1)試驗中所有可能出現的基本事件只有有限個;(有限性)
(2)每個基本事件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。
㈢觀察分析、推導方程
問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
(1)在例1的實驗中,出現字母"d"的概率是多少?
(2)在使用古典概型的概率公式時,應該注意什么?
「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
㈣例題分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
(3)向上的點數之和是5的概率是多少?
先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
㈤探究思想、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
要求學生觀察對比兩種結果,找出問題產生的原因。
「設計意圖」通過觀察對比,發現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。
㈥總結概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學生小結歸納,不足的地方老師補充說明。
「設計意圖」使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
㈦布置作業
課本練習1、2、3
「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。
高中數學教案簡單篇4
教學準備
教學目標
1·掌握平面向量的數量積及其幾何意義;
2·掌握平面向量數量積的重要性質及運算律;
3·了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;
4·掌握向量垂直的條件·
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學工具
投影儀
教學過程
一、復習引入:
1·向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ
五,課堂小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
六、課后作業
P107習題2·4A組2、7題
課后小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的.主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
課后習題
作業
P107習題2·4A組2、7題
板書
高中數學教案簡單篇5
數列的相關概念
1.數列概念
①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N--或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。
②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。
③函數不一定有解析式,同樣數列也并非都有通項公式。
高中數學教案簡單篇6
教學目標
1、了解基底的含義,理解并掌握平面向量基本定理。會用基底表示平面內任一向量。
2、掌握向量夾角的定義以及兩向量垂直的定義。
學情分析
前幾節課已經學習了向量的基本概念和基本運算,如共線向量、向量的加法、減法和數乘運算及向量共線的充要條件等;另外學生對向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學習這節課作了充分準備
重點難點
重點:對平面向量基本定理的探究
難點:對平面向量基本定理的理解及其應用
教學過程
4.1第一學時教學活動
活動1【導入】情景設置
火箭在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度v=vx+vy=6i+4j。
活動2【活動】探究
已知平面中兩個不共線向量e1,e2,c是平面內任意向量,求向量
c=___e1+___e2(課堂上準備好幾張帶格子的紙張,上面有三個向量,e1,e2,c)
做法:
作OA=e1,OB=e2,OC=c,過點C作平行于OB的直線,交直線OA于M;過點C作平行于OA的直線,交OB于N,則有且只有一對實數l1,l2,使得OM=l1e1,ON=l2e2。
因為OC=OM+ON,所以c=6e1+6e2。
向量c=__6__e1+___6__e2
活動3【練習】動手做一做
請同學們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____
(做完后,思考一下,這樣的一組實數是否是唯一的呢?)(是唯一的)
由剛才的幾個實例,可以得出結論:如果給定向量e1,e2,平面內的任一向量a,都可以表示成a=入1e1+入2e2。
活動4【活動】思考
問題2:如果e1,e2是平面內任意兩向量,那么平面內的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?
生:不行,e1,e2必須是平面內兩不共線向量
活動5【講授】平面向量基本定理
平面向量基本定理:如果e1,e2是平面內兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內所有向量的一組基底。一個平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當e1,e2互相垂直時,就稱為向量的正交分解。
說明:
(1)基底不惟一,關鍵是作為基底的兩個向量不共線。
(2)由定理可將任一向量a在給出基底e1,e2的條件下進行分解,基底給定時,分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數量。
活動6【講授】平面向量基底運用
例1.如圖所示,平行四邊形ABCD的對角線AC和BD交于點M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD
活動7【講授】向量夾角的定義
閱讀教材P94,回答如下問題:
1、兩個向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。
2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?
活動8【練習】完成《聚焦課堂》活動9【講授】課后小結
1、平面向量基本定理
2、平面向量基本定理的運用
3、向量夾角的定義。
活動10【作業】課后作業
1、已知向量e1,e2,求做:-3e1+2e2
2、做育才報第八期專項訓練1
高中數學教案簡單篇7
教學目標
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.
(2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.
教學建議
教材分析
(1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.
(2) 本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.
(3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點.
教法建議
(1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
高中數學教案簡單篇8
一、教學內容分析
二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念。掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義。
二、教學目標設計
理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題。
三、教學重點及難點
二面角的平面角的概念的形成以及二面角的平面角的作法。
四、教學流程設計
五、教學過程設計
一、新課引入
1。復習和回顧平面角的有關知識。
平面中的角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角
圖形
結構射線點射線
表示法AOB,O等
2。復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉化為平面角)
3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角。在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關。)從而,引出二面角的定義及相關內容。
二、學習新課
(一)二面角的定義
平面中的角二面角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角課本P17
圖形
結構射線點射線半平面直線半平面
表示法AOB,O等二面角a或—AB—
(二)二面角的圖示
1。畫出直立式、平臥式二面角各一個,并分別給予表示。
2。在正方體中認識二面角。
(三)二面角的平面角
平面幾何中的角可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?
1。二面角的平面角的定義(課本P17)。
2。AOB的大小與點O在棱上的位置無關。
[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題。
②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。
③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直。
3。二面角的平面角的范圍:
(四)例題分析
例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離。
[說明]①檢查學生對二面角的平面角的定義的掌握情況。
②翻折前后應注意哪些量的位置和數量發生了變化,哪些沒變?
例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小。
[說明]①求二面角的步驟:作證算答。
②引導學生掌握解題可操作性的通法(定義法和線面垂直法)。
例3已知正方體,求二面角的大小。(課本P18例1)
[說明]使學生進一步熟悉作二面角的平面角的方法。
(五)問題拓展
例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?
[說明]使學生明白數學既來源于實際又服務于實際。
三、鞏固練習
1。在棱長為1的正方體中,求二面角的大小。
2。若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離。
四、課堂小結
1。二面角的定義
2。二面角的平面角的定義及其范圍
3。二面角的平面角的常用作圖方法
4。求二面角的大?。ㄗ髯C算答)
五、作業布置
1。課本P18練習14。4(1)
2。在二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離。
3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點的距離。
六、教學設計說明
本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運用了類比的手段和方法。教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學。
高中數學教案簡單篇9
教學目標:明確等差數列的定義,掌握等差數列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養學生觀察能力,進一步提高學生推理、歸納能力,培養學生的&39;應用意識.
教學重點:1.等差數列的概念的理解與掌握.2.等差數列的通項公式的推導及應用.教學難點:等差數列“等差”特點的理解、把握和應用.教學過程:
Ⅰ.復習回顧上兩節課我們共同學習了數列的定義及給出數列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數列的特點,下面我們看這樣一些例子
Ⅱ.講授新課10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,請同學們仔細觀察這些數列有什么共同的&39;特點?是否可以寫出這些數列的通項公式?(引導學生積極思考,努力尋求各數列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數.也就是說,這些數列均具有相鄰兩項之差“相等”的特點.具有這種特點的數列,我們把它叫做等差數列.
1.定義等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.
2.等差數列的通項公式等差數列定義是由一數列相鄰兩項之間關系而得.若一等差數列{an}的首項是a1,公差是d,則據其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數列{an}的通項公式.看來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d
請同學們來思考這樣一個問題.如果在a與b中間插入一個數A,使a、A、b成等差數列,那么A應滿足什么條件?由等差數列定義及a、A、b成等差數列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數列.總之,A=a,A,b成等差數列.如果a、A、b成等差數列,那么a叫做a與b的等差中項.例題講解[
例1]在等差數列{an}中,已知a5=10,a15=25,求a25.
思路一:根據等差數列的已知兩項,可求出a1和d,然后可得出該數列的通項公式,便可求出a25.
思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數列{an}中,a5,a15,a25也成等差數列,則利用等差中項關系式,便可直接求出a25的值.
[例2](1)求等差數列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項
答案:這個數列的第20項為-49.(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數列的一項,關鍵要求出通項公式,看是否存在正整數n,可使得an=-401.∴-401是這個數列的第100項.
Ⅲ.課堂練習
1.(1)求等差數列3,7,11,……的&39;第4項與第10項.
(2)求等差數列10,8,6,……的第20項.(3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.2.在等差數列{an}中,
(1)已知a4=10,a7=19,求a1與d;
(2)已知a3=9,a9=3,求a12.
Ⅳ.課時小結通過本節學習,首先要理解與掌握等差數列的定義及數學表達式:an-an-1=d(n≥2).其次,要會推導等差數列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應用.最后,還要注意一重要關系式:an=am+(n-m)d的理解與應用以及等差中項。
Ⅴ.課后作業課本P39習題1,2,3,4
高中數學教案簡單篇10
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
高中數學教案簡單篇11
教學過程:
前言:
今天是新學期的第一堂語文課,王老師為大家帶來了一首小詩。(音樂中指名讀,齊讀。)
三年級的天空
今天,是20__年的一天
一張張可愛的笑臉
從20__年的家中匆匆趕來
來到美麗的暨陽學校,
繼續
踏入三年級明亮的天空
書寫新的傳奇。
是呀,三年級的天空一定會無比明媚。那么,今天先讓我們一起來回憶剛剛過去的美好的寒假。
一、口頭交流寒假趣事
1.新年過得如何?(用詞語來形容)
2.你覺得最有趣的是什么事?(根據你說的詞語來說說)
二、書面了解別人的寒假趣事
1.全班欣賞同學寫的優秀作文。(說說自己的感受。)
2.再欣賞網上找的。(認真傾聽,分享快樂。)
三、王老師介紹自己的寒假趣事
1.你猜猜王老師怎么度過的?
2.公布答案。(在帶寶寶的同時看書)
四、送禮物——聽故事
王老師知道我們班同學都非常喜歡聽故事,所以我在寒假的時候,特別挑選了一個故事,送給大家,作為新年禮物。
毛蟲和我
——送給新學期的孩子們
毛蟲知道,在它的身體里面,藏著一只蝴蝶。是的,它一直都知道,一刻也不曾忘記。當它慢吞吞地爬過菜葉的時候,它在想著這件事;當它貪婪地把葉子咬出一個個小洞時,它在想著這件事;當它舒展身體曬太陽的時候,它在想著這件事;當它親吻一朵美麗的小花兒時,它在想這件事……
我要挑最鮮嫩的葉子吃,它對自己說,這樣當我變成蝴蝶的時候,才會有艷麗的色彩。我要多多地吃,它對自己說,這樣當我變成蝴蝶的時候,翅膀才會有力氣。這金色的光線多么溫暖,它對自己說,最重要的是,它將變成金粉裝點我的翅膀。這朵小花多么可愛,它對自己說,將來我的翅膀上面,也會開出美麗的花兒來。
“哎呀,毛毛蟲!好丑好惡心喲!”一個小女孩指著它叫道。這樣的話毛毛蟲聽得多了,一點兒也不會破壞它的好心情。哦,我將長出一雙美麗的翅膀,它對自己說。這樣想著,毛毛蟲昂起了它小小的腦袋,慢慢爬走了。
我知道,在我的身體里面,藏著一個更好的自己。是的,我一直都知道,一刻也不曾忘記。
所以我從來都不挑食,我知道所有健康的食物都將變成我的一部分,成就一個更好的我自己。所以我努力地讀書,我知道所有那些有趣的書、嚴肅的書、美麗的書、智慧的書,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡認識新朋友,我知道所有那些善良的朋友、聰明的朋友、慷慨的朋友、睿智的朋友,他們的友情以及他們的美好天性,最終都將變成我的一部分,成就一個更好的我自己。所以我積極上好每一堂課,認真完成每一次作業,我知道千里之行始于足下,我走過的每一步路,我做過的每一件事,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡親近大自然,我知道所有那些美麗的山水、陽光、花香和清新空氣,最終都將變成我的一部分,成就一個更好的我自己。
每天早晨,我都會在鏡子面前照一照自己;每天早晨,我都會在鏡子里看到一個普普通通的小女孩(小男孩)。
可我知道,在我的身體里面,藏著一個更好的我自己。就像毛毛蟲會變成蝴蝶,小種子會長成大樹,我也會變成一個更好的我自己。
故事聽完了,王老師要檢查下你們是不是認真在聽,有沒有收到我的禮物?
1.毛毛蟲的理想是什么?它為了成就更好的自己,怎么努力的?我的理想是什么?為了做最好的自己,我又是怎么做的?(大方向)
2.聽了故事,說說自己新學期的目標?為了做最好的自己,在學習中你又準備怎么做?(小方向)(多閱讀、多思考、多寫作)
我相信,只要我們像毛毛蟲那樣努力,我們也一定可以變成美麗的蝴蝶!
四、總結
讓我們每個人多閱讀、多思考、多寫作,向著美好的自己努力。最后讓我們在詩歌中結束我們的開學第一課。(再次誦讀詩歌)
高中數學教案簡單篇12
本節課是《等比數列的前n項和》的第一課時,學生在學習了等比數列的概念、等差與等比數列的通項公式及等差數列的前n項和公式前提下學習的,對于本節課所需的知識點和探究方法都有了一定的儲備。這節課我充分利用情境,激發學生興趣,順利導入本節課的內容。
本節課我用心準備、精心設計、潛心專研,是我上好這節課的前提。在教學過程中,我充分體現了教學目標,抓住了教學重點,解決了教學難點,更重要的是,全班學生心、神、情、與我深度融合。這節課的.內容是“等差數列的前n項和”與“等比數列”內容的延續,為學生后面學綜合數列的求和做了鋪墊,重點是推導等比數列的前n項和的公式以及公式的簡單應用,難點是用錯位相減法推導等比數列的前n項和公式以及公式應用中對q與1的討論。本節課我注重從“知識傳授”的傳統模式轉變為“以學生為主體”的參與模式,注重數學思想方法的滲透和良好的思維品質的養成,注重學生創造精神和實踐能力的培養,這在一定的程度上,激活了學生的思維,但對教師的挑戰也是不言而喻的,不僅要透徹理解教材的意圖,還要有寬厚的知識積累和深厚的自學功底。
在等比數列求和的教學時,開始我給同學們說了一個故事,“在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚?!睘槭裁茨??同學們很好奇,于是有計算器的同學拿出了計算器,結果沒有計算完,計算器就算不出來了。激發學生的興趣,調動學習的積極性,于是引入主題,等比數列求和。
首先讓學生回憶等差數列的求和公式的推導方法,結合自己的預習談談自己對課本上等比數列求和公式推導過程的理解,其本質是什么?這樣做的目的是什么?此時教師根據學生們的討論和展示,適時點撥,指出問題的關鍵。在用錯位相減法推出等比數列前n項和公式過程中,做差后提醒同學們,接下來要做什么工作,注意什么,學生們自然知道分母不能為零,因而知道了等比數列前n項和公式是分情況討論的,為什么會有公比為1和公比不為1兩種情況。此時再提醒學生等差數列求和公式是一個公式的兩種形式,而等比數列求和公式是兩種不同情況下的公式。然后是對求和公式的簡單應用。所以讓學生經歷等比數列前n項和公式的推導過程成了本節課的重點與難點,在改善學生的學習方式上,是讓學生提出問題并解決問題來進行自主學習、合作學習與探究學習。
在教學環節上我利用小組合作學習、學生自主學習、小組討論、學生展示、師生點評,教師總結升華,當堂檢測等環節,有效地實現本節課的教學目標。在教學評價上我關注學生,不單純看學生是否會解題,關鍵是看學生是否動腦,看學生的思維過程來肯定和鼓勵,如在解決情景問題的過程中,學生躍躍欲試、情緒高漲、討論激烈,可能會探究出多種解決方案,適時地鼓勵與評價,使學生的進取心得到增強,是激發學生學習數學興趣的有效途徑。我通過對學生的評價,將知識點和思想方法又得到強化。
總之,這節課也有不足,容量大,知識豐富,滲透歸納與推理、錯位相減法、從特殊到一般、類比推理、分類討論等數學思想,對學生要求高。但通過課堂反應,教學效果好,這是我感到欣慰的地方。
高中數學教案簡單篇13
六年級,讓好習慣不離身
一、目標
“要做事,先做人”,“好習慣使人終生收益”。
二、數學學科行為訓導內容
1、專心聽
講的習慣。
2、勤思好問的習慣。
3、預習習慣。
4、主動探究的習慣。
5、自覺作筆記的習慣。
6、獨立完成作業的習慣。
三、教學過程
“同學們,為了能在20__年6月順利畢業,你準備好了嗎?”
老師知道,你們都是很優秀的,相信你們以后會做得更優秀。有沒有信心?
(一)講故事,感悟
第一個故事:一個人在高山之巔的鷹巢里,抓到了一只幼鷹,他把幼鷹帶回家,養在雞籠里。這只幼鷹和雞一起啄食、嬉鬧和休息,它以為自己是一只雞。這只鷹漸漸長大,羽翼豐滿了,主人想把它訓練成獵鷹,可是由于終日和雞混在一起,它已經變得和雞完全一樣,根本沒有飛的愿望了。主人試了各種辦法,都毫無效果,最后把它帶到山頂上,一把將它扔了出去。這只鷹像塊石頭似的,直掉下去,慌亂之中它拼命地撲打翅膀,就這樣,它終于飛了起來!(——相信自己是一只雄鷹,勇敢面對一切挑戰和失敗。)
第二個故事:開學第一天,大哲學家蘇格拉底對學生們說:“今天,我們只做一件最簡單也是最容易做的事兒:每個人把胳膊盡量都往前甩,然后再盡量往后甩。”說著,蘇格拉底示范了一遍,“從今天開始,每天做300下,大家能做到嗎?”學生們都笑了,這么簡單的事情,有什么做不到的?過了一個月,蘇格拉底問學生們:“每天甩手300下,哪些同學堅持了?”有90%的同學驕傲地舉起了手。又過了一個月,蘇格拉底再問,這回,堅持下來的同學只剩下了八成。一年過后,蘇格拉底再一次問大家:“請大家告訴我,最簡單的甩手運動,還有哪幾位同學堅持了?”這時候,整個教室里,只有一個人舉起了手。這個學生就是后來成為古希臘另一位大哲學家的柏拉圖。(——成功在于堅持,這是一個并不神秘的秘訣。)
第三個故事:有個老人在河邊釣魚,一個小孩走過去看他釣魚,老人技巧純熟,所以沒多久就釣上了滿簍的魚,老人見小孩很可愛,要把整簍的魚送給他,小孩搖搖頭,老人驚異的問道你為何不要?小孩回答:“我想要你手中的釣竿?!崩先藛枺骸澳阋灨妥鍪裁?小孩說:“這簍魚沒多久就吃完了,要是我有釣竿,我就可以自己釣,一輩子也吃不完。”你們說,這個小孩是不是很聰明?(——重要的還在釣技。學習,不能只記住知識,更重要的是掌握方法,形成能力。)
第四個故事:某人在屋檐下躲雨,看見觀音正撐傘走過。這人說:“觀音菩薩,普度一下眾生吧,帶我一段如何?”觀音說:“我在雨里,你在檐下,而檐下無雨,你不需要我度?!边@人立刻跳出檐下,站在雨中:“現在我也在雨中了,該度我了吧?”觀音說:“你在雨中,我也在雨中,我不被淋,因為有傘;你被雨淋,因為無傘。所以不是我度自己,而是傘度我。你要想度,不必找我,請自找傘去!”說完便走了。第二天,這人遇到了難事,便去寺廟里求觀音。走進廟里,才發現觀音的像前也有一個人在拜,那個人長得和觀音一模一樣,絲毫不差。這人問:“你是觀音嗎?”那人答道:“我正是觀音?!边@人又問:“那你為何還拜自己?”觀音笑道:“我也遇到了難事,但我知道,求人不如求己?!钡谖鍌€故事:一頭馱著沉重貨物的驢,氣喘吁吁地請求只馱了一點貨物的馬:“幫我馱一點東西吧。對你來說,這不算什么;可對我來說,卻可以減輕不少負擔?!瘪R不高興地回答:“你憑什么讓我幫你馱東西,我樂得輕松呢?!辈痪?,驢累死了。主人將驢背上的所有貨物全部加在馬背上,馬懊悔不已。
膨脹的自我使我們忽略了一個基本事實,那就是:我們同在生活這條大船上,別人的好壞與我們休戚相關。別人的不幸不能給我們帶來快樂,相反,在幫助別人的時候,其實也是在幫助我們自己。一位信佛的老人告訴我,人好比一只空杯,里面的水滿了,你得施一半給人家,待杯子里又滿了,再施一半給人家。只有不斷進、不斷出,你這個杯子才會有價值,你這里的水才會是活水。如果只進不出,你那只杯子也就再也裝不進了。當你得到一杯水的時候,你別忘記,其中的一半是奉獻。假如你不愿奉獻,你就再也得不到了。
小結:
第一,相信自己,勇敢面對
第二、養成習慣,重在堅持
第三、注重方法,培養能力
第四、求人不如求己
第五、幫助別人,追求雙蠃
(二)六年級學生必須養成的學習習慣
1、專心聽講的習慣
課堂上全神貫注、靜心聆聽、積極思考、勇于發言是學習高效的前提條件,希望各位同學能夠充分利用每天課堂上的40分鐘時間漂亮地完成當天的學習任務。讓自己的課余時間更輕松、更自由。
2、勤思好問的習慣
在課堂上除了認真聽講以外,還要勤于思考,善于提問,這樣的學習才是更有效的學習,學習能力才會提升,學習成績才會提高。
3、預習習慣。
預習可以培養和提高我們的自學能力、提高聽課效率。學習新知識以前,老師會設計幾個問題,讓大家帶著問題去預習。我們可用彩筆勾劃出書中的重要內容,在不理解的地方標上記號,
(1)通過自學,將自己看到的,想到的用筆在書中某個地方規范地記錄下來,能初步理解書中的概念,并能舉例說明。
(2)會敘述書中闡明的算理,并嘗試完成“做一做”中的習題。
(3)自擬思考題,在小組內交流并討論。
4、主動探究的習慣。
(1)觀察:觀察要仔細、全面,要有目的、有條理,通過觀察發現問題并提出問題、討論問題、解決問題;
(2)在老師指導下畫圖分析或動手操作的習慣。
5、自覺作筆記的習慣。
在課堂上要養成記筆記的好習慣,可以記錄在數學書上,但一定要規范,如可在書中某些空白地方畫上一些條形格子,然后用工整的書寫記錄下每節課知識重點和要點,記知識結構與規律,記公式,記補充內容等。
6、獨立完成作業的習慣。
(1)細心審題,弄清題目的要求,思考解題的方法
(2)獨自去解決問題。
(3)書寫格式符合要求。
(4)當天的作業當天完成。
(5)每天作業及時清理、每單元進行評比。
(6)每單元檢測后自我查漏補缺的習慣。
高中數學教案簡單篇14
直線的方程
教學目標
(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學建議
1.教材分析
(1)知識結構
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.
(2)重點、難點分析
①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.
②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.
直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點
(3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.
(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).
(6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.
(7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.
(8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.
