創新教案八年級數學電子版
教案可以幫助教師及時了解學生的學習情況和學習成果,有針對性地調整教學策略,更好地促進學生的學習。什么樣的創新教案八年級數學電子版才算是優秀的呢?這里整理一些創新教案八年級數學電子版,方便大家學習。
創新教案八年級數學電子版篇1
一、課堂導入
回顧平行四邊的性質定理及定義
1.什么叫平行四邊形?平行四邊形有什么性質?
2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)
根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?
二、新課講解
平行四邊形的判定:
(定義法):兩組對邊分別平行的四邊形的平邊形。
幾何語言表達定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。
活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。
(平行四邊形判定定理):
(一)兩組對邊分別相等的四邊形是平行四邊形。
設問:這個命題的前提和結論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。
板書證明過程。
小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?
活動:課本探究內容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?
設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)
創新教案八年級數學電子版篇2
一、學習目標:
1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;
2、會運用兩數差的平方公式進行計算。
二、學習過程:
請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:
(一)探索
1、計算:(a-b)=
方法一:方法二:
方法三:
2、兩數差的平方用式子表示為_________________________;
用文字語言敘述為___________________________。
3、兩數差的平方公式結構特征是什么?
(二)現學現用
利用兩數差的平方公式計算:
1、(3-a)2、(2a-1)3、(3y-x)
4、(2x–4y)5、(3a-)
(三)合作攻關
靈活運用兩數差的平方公式計算:
1、(999)2、(a–b–c)
3、(a+1)-(a-1)
(四)達標訓練
1、、選擇:下列各式中,與(a-2b)一定相等的是()
A、a-2ab+4bB、a-4b
C、a+4bD、a-4ab+4b
2、填空:
(1)9x++16y=(4y-3x)
(2)()=m-8m+16
2、計算:
(a-b)(x-2y)
3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?
(四)提升
1、本節課你學到了什么?
2、已知a–b=1,a+b=25,求ab的值
創新教案八年級數學電子版篇3
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養學生綜合、分析數學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數的轉化,提公因式法,平方差公式的靈活運用。
教學案例:
我們數學組的觀課議課主題:
1、關注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結因式分解的步驟是什么?
師巡回指導,生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……
反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的'條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。
我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……
創新教案八年級數學電子版篇4
教學任務分析
教學目標
知識技能
探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.
數學思考
能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養學生的分析問題能力和計算能力.
解決問題
通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.
情感態度
在應用等腰梯形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.
重點
等腰梯形的性質及其應用.
難點
解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.
教學流程安排
活動流程圖
活動的內容和目的
活動1想一想
活動2說一說
活動3畫一畫
活動4做—做
活動5練一練
活動6理一理
觀察梯形圖片,引入本節課的學習內容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動,初步發現梯形與三角形的轉化關系.
探究得到等腰梯形的性質.
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識、提高能力、滲透思想.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?
演示圖片,學生欣賞.
結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養學生的觀察、概括能力.
[活動2]
梯形定義一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區別和聯系.
通過類比,培養學生歸納、總結的能力.
問題與情景
師生行為
設計意圖
一些基本概念
(1)(如圖):底、腰、高.
(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一個角是直角的梯形叫做直角梯形.
學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發言后,教師可以強調:①梯形與四邊形的關系;
②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質做準備.
[活動3]
畫一畫
在下列所給圖中的每個三角形中畫一條線段,
(1)怎樣畫才能得到一個梯形?
(2)在哪些三角形中,能夠得到一個等腰梯形?
在學生獨立探究的基礎上,學生分組交流.
教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.
本次活動教師應重點關注:
(1)學生在活動過程中能否發現梯形與三角形之間的聯系,他們之間的轉化方法.
(2)學生能否將等腰三角形轉化為等腰梯形.
(3)學生能否主動參與探究活動,在討論中發表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.
等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.
問題與情景
師生行為
設計意圖
[活動4]
做—做
探索等腰梯形的性質(引入用軸對稱解決問題的思想).
在一張方格紙上作一個等腰梯形,連接兩條對角線.
(1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發現哪些相等的&39;線段和相等的角?學生畫圖并通過觀察猜想;
(2)這個等腰梯形的兩條對角線的長度有什么關系?
學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.
針對不同認識水平的學生,教師指導學生活動.
師生共同歸納:
①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.
②等腰梯形兩腰相等.
③等腰梯形同一底上的兩個角相等.
④等腰梯形的兩條對角線相等.
教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.
[活動5]
練—練
例1(教材P118的例1)略.
例2如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.
分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.
其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.
問題與情景
師生行為
設計意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.
[活動6]
1.小結
2.布置作業
(1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
(2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
(3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)
師生歸納總結:
解決梯形問題常用的方法:
(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);
(2)“作高”:使兩腰在兩個直角三角形中(圖2);
(3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);
(4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);
(5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).
盡量多地讓學生參與發言是一個交流的過程.
梳理本節課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續探究的空間.
學生通過獨立思考,完成課后作業,便于發現問題,及時查漏補缺.
創新教案八年級數學電子版篇5
不知不覺間,從開學到現在已有一段時間了。回顧這段時間來自己的數學教學工作,感覺無論是課堂教學效果還是學生的學習成績都不容樂觀。上學期末,學生的考試成績不是很理想,所以在在本學期中,我結合自身的實際和學生的特點,認真的備課,上好每一堂課,在這段時間的教學中,我有如下的教學反思:
一、備課過程中還有不足的地方,沒有充分認識到知識點的難度和學生的實際情況。
從幾次的小測驗來看,數學成績處在中等及稍偏下的學生成績下滑較大。回顧自己在教學中所進行的備課工作,以及針對性練習,感覺難度過大,沒有估計到中等生的學習能力,無形中給中等生的聽課和理解增加了難度,造成其對知識點的理解不夠透徹,運用知識的能力下降。通過小測試考試試卷,發現中等生在答題的過程中,知識點混淆不清,解題思路混亂,不能抓住問題的關鍵。
二、對部分成績較好的學生的監管力度不夠,放松了對他們的學習要求。
考試不僅中等生的成績下滑,少數平時數學成績較好學生考試成績很差,勉強及格甚至不及格。究其原因是對該部分學生在課后的學習和練習的過程中,沒有過多的去關注,未能及時發現他們存在的問題并給以指正,導致其產生驕傲自滿的情緒,學習也不如以往認真,作業也馬虎了事,最終成績出現重大危機。
三、沒有抓緊對基礎知識和基本技能的訓練。
從平常的測驗,作業來看,相當部分學生存在著計算方面的問題,稍微復雜一點的計算錯誤百出,簡單的幾何作圖和識圖能力都很差。有部分學生甚至不會找全等三角形對應邊、角,常用的全等三角形的判定方法如“SAS”、“ASA”“SSS”這幾個定理都沒有掌握好,至于角平分線性質及判定定理和線段垂直平分線性質與判定就更不用說了。相當部分學生分不清平方根與算術平方根的區別與聯系,不會進行簡單的開方計算。
通過八年級數學上學期的教學和下學期教學的這段時間,我深刻體會到在學生真的在數學方面學習興趣不像其他科目一樣感興趣。所以我們數學老師任重而道遠,既要提高學生的學習興趣,又要引導學生自主探索學習,當他們遇到自己無法解決的疑難問題時,我們教師在觀察的過程中應該做適當的評價和提示,以彌補學生學習自主學習能力的不足之處,從而達到化難為易、提高學生數學水平的目的。在課堂教學過程中,和課后的接觸中誠信的交流(教師與學生之間,學生與學生之間)意味著教師對學生的殷切的期望和美好的激勵。我們教師都喜望每一個學生都能學好數學,真誠的贊美學生數學做題或學習的成功,讓學生在課堂中能在不斷出現的新問題和不斷被自己“聰明”的解決問題的成功愉悅中進行學習,讓他們享受到學習的快樂。
整體的數學教學還是要從最基礎的抓起,計算是基礎中的基礎。從試卷上所反映出來的問題說明本班學生在最基本的計算上還有待于加強。其次是培養學生分析問題的能力,解題的關健是會分析,分析能力的提高,才能更有效地解決問題的。再次學生的形象思維能力還有待于加強,對于圖形題、作圖題這類比較抽象的空間思維能力的題,學生的解決能力還存在欠缺。我們學習數學的目的就是為了解決問題。在解決問題還要加強學生分析問題、概括問題、發現問題的能力,在教學中多重視學生的反饋,注重學生學習能力的培養。最后還是要從自身教學水平和教學能力上去分析,加強業務學習,注重課堂教學,認真對待每一次的教學,及時反思,及時總結。
創新教案八年級數學電子版篇6
一、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解.不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集.求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式.基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質
性質1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(注:移項要變號,但不等號不變。)
性質2、不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.
性質3、不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、若a>b,則a+c>b+c;<2>、若a>b,c>0則ac>bc若c<0,則ac<bc<p="">
不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c
三、解不等式的步驟:
1、去分母;
2、去括號;
3、移項合并同類項;
4、系數化為1。
四、解不等式組的步驟:
1、解出不等式的解集
2、在同一數軸表示不等式的解集。
五、列一元一次不等式組解實際問題的一般步驟:
(1)審題;
(2)設未知數,找(不等量)關系式;
(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗并作答。
六、常考題型:
1、求4x-67x-12的非負數解.
2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。
創新教案八年級數學電子版篇7
一、學習目標:
1.經歷探索平方差公式的過程。
2.會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20__×1999
(2)998×1002
導入新課:計算下列多項式的積.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結
(a+b)(a—b)=a2—b2
