高二數學學習教案
教案可以幫助教師提高教學質量,從而更好地提高學生的學習成績。那要怎么寫高二數學學習教案呢?這里提供一些高二數學學習教案,希望對大家能有所幫助。
高二數學學習教案篇1
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1.使學生熟練掌握函數的概念和映射的定義;
2.使學生能夠根據已知條件求出函數的定義域和值域;3.使學生掌握函數的三種表示方法。
二.教學內容:1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:
(),yf_A
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()}f_A?叫值域(range)。顯然,值域是集合B的子集。
注意:
①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.2.構成函數的三要素定義域、對應關系和值域。3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。
4.區間及寫法:
設a、b是兩個實數,且a
(1)滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];
(2)滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法①解析法②列表法③圖像法
高二數學學習教案篇2
1.本節課的重點是了解程序框圖的含義,理解程序框圖的作用,掌握各種程序框和流程線的畫法與功能,理解程序框圖中的順序結構,會用順序結構表示算法.難點是理解程序框圖的作用及用順序結構表示算法.
2.本節課要重點掌握的規律方法
(1)掌握畫程序框圖的幾點注意事項,見講1;
(2)掌握應用順序結構表示算法的步驟,見講2.
3.本節課的易錯點
對程序框圖的理解有誤致錯,如講1.
課下能力提升(二)
[學業水平達標練]
題組1程序框圖
1.在程序框圖中,一個算法步驟到另一個算法步驟的連接用()
A.連接點B.判斷框C.流程線D.處理框
解析:選C流程線的意義是流程進行的方向,一個算法步驟到另一個算法步驟表示的是流程進行的方向,而連接點是當一個框圖需要分開來畫時,在斷開處畫上連接點.判斷框是根據給定條件進行判斷,處理框是賦值、計算、數據處理、結果傳送,所以A,B,D都不對.故選C.
2.a表示“處理框”,b表示“輸入、輸出框”,c表示“起止框”,d表示“判斷框”,以下四個圖形依次為()
A.abcdB.dcabC.bacdD.cbad
答案:D
3.如果輸入n=2,那么執行如下算法的結果是()
第一步,輸入n.
第二步,n=n+1.
第三步,n=n+2.
第四步,輸出n.
A.輸出3B.輸出4
C.輸出5D.程序出錯
答案:C
題組2順序結構
4.如圖所示的程序框圖表示的算法意義是()
A.邊長為3,4,5的直角三角形面積
B.邊長為3,4,5的直角三角形內切圓面積
C.邊長為3,4,5的直角三角形外接圓面積
D.以3,4,5為弦的圓面積
解析:選B由直角三角形內切圓半徑r=a+b-c2,知選B.
第4題圖第5題圖
5.(2016?東營高一檢測)給出如圖所示的程序框圖:
若輸出的結果為2,則①處的執行框內應填的是()
A.x=2B.b=2
C.x=1D.a=5
解析:選C∵b=2,∴2=a-3,即a=5.∴2x+3=5時,得x=1.
6.寫出如圖所示程序框圖的運行結果:S=________.
解析:S=log24+42=18.
答案:18
7.已知半徑為r的圓的周長公式為C=2πr,當r=10時,寫出計算圓的周長的一個算法,并畫出程序框圖.
解:算法如下:第一步,令r=10.第二步,計算C=2πr.第三步,輸出C.
程序框圖如圖:
8.已知函數f(x)=x2-3x-2,求f(3)+f(-5)的值,設計一個算法并畫出算法的程序框圖.
解:自然語言算法如下:
第一步,求f(3)的值.
第二步,求f(-5)的值.
第三步,將前兩步的結果相加,存入y.
第四步,輸出y.
程序框圖:
[能力提升綜合練]
1.程序框圖符號“”可用于()
A.輸出a=10B.賦值a=10
C.判斷a=10D.輸入a=1
解析:選B圖形符號“”是處理框,它的功能是賦值、計算,不是輸出、判斷和輸入,故選B.
2.(2016?廣州高一檢測)如圖程序框圖的運行結果是()
A.52B.32
C.-32D.-1
解析:選C因為a=2,b=4,所以S=ab-ba=24-42=-32,故選C.
3.(2016?廣州高一檢測)如圖是一個算法的程序框圖,已知a1=3,輸出的b=7,則a2等于()
A.9B.10
C.11D.12
解析:選C由題意知該算法是計算a1+a22的值.
∴3+a22=7,得a2=11,故選C.
4.(2016?佛山高一檢測)閱讀如圖所示的程序框圖,若輸出的結果為6,則①處執行框應填的是()
A.x=1B.x=2
C.b=1D.b=2
解析:選B若b=6,則a=7,∴x3-1=7,∴x=2.
5.根據如圖所示的程序框圖所表示的算法,輸出的結果是________.
解析:該算法的第1步分別將1,2,3賦值給X,Y,Z,第2步使X取Y的值,即X取值變成2,第3步使Y取X的值,即Y的值也是2,第4步讓Z取Y的值,即Z取值也是2,從而第5步輸出時,Z的值是2.
答案:2
6.計算圖甲中空白部分面積的一個程序框圖如圖乙,則①中應填________.
圖甲圖乙
解析:圖甲空白部分的面積為a2-π16a2,故圖乙①中應填S=a2-π16a2.
答案:S=a2-π16a2
7.在如圖所示的程序框圖中,當輸入的x的值為0和4時,輸出的值相等,根據該圖和各小題的條件回答問題.
(1)該程序框圖解決的是一個什么問題?
(2)當輸入的x的值為3時,求輸出的f(x)的值.
(3)要想使輸出的值,求輸入的x的值.
解:(1)該程序框圖解決的是求二次函數f(x)=-x2+mx的函數值的問題.
(2)當輸入的x的值為0和4時,輸出的值相等,即f(0)=f(4).
因為f(0)=0,f(4)=-16+4m,
所以-16+4m=0,
所以m=4.
所以f(x)=-x2+4x.
則f(3)=-32+4×3=3,
所以當輸入的x的值為3時,輸出的f(x)的值為3.
(3)因為f(x)=-x2+4x=-(x-2)2+4,
所以當x=2時,f(x)max=4,
所以要想使輸出的值,輸入的x的值應為2.
8.如圖是為解決某個問題而繪制的程序框圖,仔細分析各框內的內容及圖框之間的關系,回答下面的問題:
(1)圖框①中x=2的含義是什么?
(2)圖框②中y1=ax+b的含義是什么?
(3)圖框④中y2=ax+b的含義是什么?
(4)該程序框圖解決的是怎樣的問題?
(5)當最終輸出的結果是y1=3,y2=-2時,求y=f(x)的解析式.
解:(1)圖框①中x=2表示把2賦值給變量x.
(2)圖框②中y1=ax+b的含義是:該圖框在執行①的前提下,即當x=2時,計算ax+b的值,并把這個值賦給y1.
(3)圖框④中y2=ax+b的含義是:該圖框在執行③的前提下,即當x=-3時,計算ax+b的值,并把這個值賦給y2.
(4)該程序框圖解決的是求函數y=ax+b的函數值的問題,其中輸入的是自變量x的值,輸出的是對應x的函數值.
(5)y1=3,即2a+b=3.⑤
y2=-2,即-3a+b=-2.⑥
由⑤⑥,得a=1,b=1,
所以f(x)=x+1.
高二數學學習教案篇3
教學準備
教學目標
一、知識與技能
(1)理解并掌握弧度制的定義;(2)領會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數集之間建立的一一對應關系.(6)使學生通過弧度制的學習,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統一的,而不是孤立、割裂的關系.
二、過程與方法
創設情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領會定義的合理性.根據弧度制的定義推導并運用弧長公式和扇形面積公式.以具體的實例學習角度制與弧度制的互化,能正確使用計算器.
三、情態與價值
通過本節的學習,使同學們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統一的,而不是孤立、割裂的關系.角的概念推廣以后,在弧度制下,角的集合與實數集之間建立了一一對應關系:即每一個角都有的一個實數(即這個角的弧度數)與它對應;反過來,每一個實數也都有的一個角(即弧度數等于這個實數的角)與它對應,為下一節學習三角函數做好準備.
教學重難點
重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用.
難點:理解弧度制定義,弧度制的運用.
教學工具
投影儀等
教學過程
一、創設情境,引入新課
師:有人問:??诘饺齺営卸噙h時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)
顯然,兩種回答都是正確的,但為什么會有不同的數值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.
在角度的度量里面,也有類似的情況,一個是角度制,我們已經不再陌生,另外一個就是我們這節課要研究的角的另外一種度量制---弧度制.
二、講解新課
1.角度制規定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.
2.弧度制的定義
長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).
(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.
我們知道,角有正負零角之分,它的弧度數也應該有正負零之分,如-π,-2π等等,一般地,正角的弧度數是一個正數,負角的弧度數是一個負數,零角的弧度數是0,角的正負主要由角的旋轉方向來決定.
角的概念推廣以后,在弧度制下,角的集合與實數集R之間建立了一一對應關系:即每一個角都有的一個實數(即這個角的弧度數)與它對應;反過來,每一個實數也都有的一個角(即弧度數等于這個實數的角)與它對應.
四、課堂小結
度數與弧度數的換算也可借助“計算器”《中學數學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數的集合之間建立一種一一對應的關系。
五、作業布置
作業:習題1.1A組第7,8,9題.
課后小結
度數與弧度數的換算也可借助“計算器”《中學數學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數的集合之間建立一種一一對應的關系。
課后習題
作業:習題1.1A組第7,8,9題.
板書
高二數學學習教案篇4
教學準備
教學目標
1、知識與技能
(1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發學生學習興趣.(7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識.
2、過程與方法
通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習.
3、情態與價值
通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分.角的概念推廣以后,知道角之間的關系.理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物.
教學重難點
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法.
難點:終邊相同的角的表示.
教學工具
投影儀等.
教學過程
【創設情境】
思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1.25
小時,你應當如何將它校準?當時間校準以后,分針轉了多少度?
[取出一個鐘表,實際操作]我們發現,校正過程中分針需要正向或反向旋轉,有時轉不到一周,有時轉一周以上,這就是說角已不僅僅局限于之間,這正是我們這節課要研究的主要內容——任意角.
【探究新知】
1.初中時,我們已學習了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形.如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉到終止位置OB,就形成角a.旋轉開始時的射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點.
2.如上述情境中所說的校準時鐘問題以及在體操比賽中我們經常聽到這樣的術語:“轉體”(即轉體2周),“轉體”(即轉體3周)等,都是遇到大于的角以及按不同方向旋轉而成的角.同學們思考一下:能否再舉出幾個現實生活中“大于的角或按不同方向旋轉而成的角”的例子,這些說明了什么問題?又該如何區分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉時成不同的角,這些都說明了我們研究推廣角概念的必要性.為了區別起見,我們規定:按逆時針方向旋轉所形成的角叫正角(positiveangle),按順時針方向旋轉所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉,我們稱它形成了一個零角(zeroangle).
8.學習小結
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合.
五、評價設計
1.作業:習題1.1A組第1,2,3題.
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點.
課后小結
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合.
課后習題
作業:
1、習題1.1A組第1,2,3題.
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點.
板書
略
高二數學學習教案篇5
教學目標:
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發現過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養學生的探索發現能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
教學重點、難點:
1、重點:指數函數的圖像和性質
2、難點:底數a的變化對函數性質的影響,突破難點的關鍵是利用多媒體
動感顯示,通過顏色的區別,加深其感性認識。
教學方法:引導——發現教學法、比較法、討論法
教學過程:
一、事例引入
T:上節課我們學習了指數的運算性質,今天我們來學習與指數有關的函數。什么是函數?
S:--------
T:主要是體現兩個變量的關系。我們來考慮一個與醫學有關的例子:大家對“非典”應該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,------。一個這樣的球菌分裂x次后,得到的球菌的個數y與x的函數關系式是:y=2x)
S,T:(討論)這是球菌個數y關于分裂次數x的函數,該函數是什么樣的形式(指數形式),
從函數特征分析:底數2是一個不等于1的正數,是常量,而指數x卻是變量,我們稱這種函數為指數函數——點題。
二、指數函數的定義
C:定義:函數y=ax(a>0且a≠1)叫做指數函數,x∈R.。
問題1:為何要規定a>0且a≠1?
S:(討論)
C:(1)當a<0時,ax有時會沒有意義,如a=﹣3時,當x=
就沒有意義;
(2)當a=0時,ax有時會沒有意義,如x=-2時,
(3)當a=1時,函數值y恒等于1,沒有研究的必要。
鞏固練習1:
下列函數哪一項是指數函數()
A、y=x2B、y=2x2C、y=2xD、y=-2x
高二數學學習教案篇6
1.本節課的重點是理解算法的概念,體會算法的思想,難點是掌握簡單問題算法的表述.
2.本節課要重點掌握的規律方法
(1)掌握算法的特征,見講1;
(2)掌握設計算法的一般步驟,見講2;
(3)會設計實際問題的算法,見講3.
3.本節課的易錯點
(1)混淆算法的特征,如講1.
(2)算法語言不規范致誤,如講3.
課下能力提升(一)
[學業水平達標練]
題組1算法的含義及特征
1.下列關于算法的說法錯誤的是()
A.一個算法的步驟是可逆的
B.描述算法可以有不同的方式
C.設計算法要本著簡單方便的原則
D.一個算法不可以無止境地運算下去
解析:選A由算法定義可知B、C、D對,A錯.
2.下列語句表達的是算法的有()
①撥本地電話的過程為:1提起話筒;2撥號;3等通話信號;4開始通話或掛機;5結束通話;
②利用公式V=Sh計算底面積為3,高為4的三棱柱的體積;
③x2-2x-3=0;
④求所有能被3整除的正數,即3,6,9,12,….
A.①②B.①②③
C.①②④D.①②③④
解析:選A算法通常是指按照一定規則解決某一類問題的明確和有限的步驟.①②都各表達了一種算法;③只是一個純數學問題,不是一個明確步驟;④的步驟是無窮的,與算法的有窮性矛盾.
3.下列各式中S的值不可以用算法求解的是()
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1+12+…+110000
D.S=1+2+3+4+…
解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.
題組2算法設計
4.給出下面一個算法:
第一步,給出三個數x,y,z.
第二步,計算M=x+y+z.
第三步,計算N=13M.
第四步,得出每次計算結果.
則上述算法是()
A.求和B.求余數
C.求平均數D.先求和再求平均數
解析:選D由算法過程知,M為三數之和,N為這三數的平均數.
5.(2016?東營高一檢測)一個算法步驟如下:
S1,S取值0,i取值1;
S2,如果i≤10,則執行S3,否則執行S6;
S3,計算S+i并將結果代替S;
S4,用i+2的值代替i;
S5,轉去執行S2;
S6,輸出S.
運行以上步驟后輸出的結果S=()
A.16B.25
C.36D.以上均不對
解析:選B由以上計算可知:S=1+3+5+7+9=25,答案為B.
6.給出下面的算法,它解決的是()
第一步,輸入x.
第二步,如果x<0,則y=x2;否則執行下一步.
第三步,如果x=0,則y=2;否則y=-x2.
第四步,輸出y.
A.求函數y=x2?x<0?,-x2?x≥0?的函數值
B.求函數y=x2?x<0?,2?x=0?,-x2?x>0?的函數值
C.求函數y=x2?x>0?,2?x=0?,-x2?x<0?的函數值
D.以上都不正確
解析:選B由算法知,當x<0時,y=x2;當x=0時,y=2;當x>0時,y=-x2.故選B.
7.試設計一個判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關系的算法.
解:算法步驟如下:
第一步,輸入圓心的坐標(a,b)、半徑r和直線方程的系數A、B、C.
第二步,計算z1=Aa+Bb+C.
第三步,計算z2=A2+B2.
第四步,計算d=z1z2.
第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d
8.某商場舉辦優惠促銷活動.若購物金額在800元以上(不含800元),打7折;若購物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折.請為商場收銀員設計一個算法,要求輸入購物金額x,輸出實際交款額y.
解:算法步驟如下:
第一步,輸入購物金額x(x>0).
第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉第四步;否則,執行第三步.
第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.
第四步,輸出y,結束算法.
題組3算法的實際應用
9.國際奧委會宣布2020年夏季奧運會主辦城市為日本的東京.據《中國體育報》報道:對參與競選的5個夏季奧林匹克運動會申辦城市進行表決的操作程序是:首先進行第一輪投票,如果有一個城市得票數超過總票數的一半,那么該城市將獲得舉辦權;如果所有申辦城市得票數都不超過總票數的一半,則將得票最少的城市淘汰,然后進行第二輪投票;如果第二輪投票仍沒選出主辦城市,將進行第三輪投票,如此重復投票,直到選出一個主辦城市為止,寫出投票過程的算法.
解:算法如下:
第一步,投票.
第二步,統計票數,如果一個城市得票數超過總票數的一半,那么該城市就獲得主辦權,否則淘汰得票數最少的城市并轉第一步.
第三步,宣布主辦城市.
[能力提升綜合練]
1.小明中午放學回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準備面條及佐料2分鐘;④用鍋把水燒開10分鐘;⑤煮面條和菜共3分鐘.以上各道工序,除了④之外,一次只能進行一道工序.小明要將面條煮好,最少要用()
A.13分鐘B.14分鐘
C.15分鐘D.23分鐘
解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開10分鐘(同時②洗菜6分鐘+③準備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘.解決一個問題的算法不是的,但在設計時要綜合考慮各個方面的因素,選擇一種較好的算法.
2.在用二分法求方程零點的算法中,下列說法正確的是()
A.這個算法可以求方程所有的零點
B.這個算法可以求任何方程的零點
C.這個算法能求方程所有的近似零點
D.這個算法并不一定能求方程所有的近似零點
解析:選D二分法求方程零點的算法中,僅能求方程的一些特殊的近似零點(滿足函數零點存在性定理的條件),故D正確.
3.(2016?青島質檢)結合下面的算法:
第一步,輸入x.
第二步,判斷x是否小于0,若是,則輸出x+2,否則執行第三步.
第三步,輸出x-1.
當輸入的x的值為-1,0,1時,輸出的結果分別為()
A.-1,0,1B.-1,1,0
C.1,-1,0D.0,-1,1
解析:選C根據x值與0的關系選擇執行不同的步驟.
4.有如下算法:
第一步,輸入不小于2的正整數n.
第二步,判斷n是否為2.若n=2,則n滿足條件;若n>2,則執行第三步.
第三步,依次從2到n-1檢驗能不能整除n,若不能整除,則n滿足條件.
則上述算法滿足條件的n是()
A.質數B.奇數
C.偶數D.合數
解析:選A根據質數、奇數、偶數、合數的定義可知,滿足條件的n是質數.
5.(2016?濟南檢測)輸入一個x值,利用y=x-1求函數值的算法如下,請將所缺部分補充完整:
第一步:輸入x;
第二步:________;
第三步:當x<1時,計算y=1-x;
第四步:輸出y.
解析:以x-1與0的大小關系為分類準則知第二步應填當x≥1時,計算y=x-1.
答案:當x≥1時,計算y=x-1
6.已知一個算法如下:
第一步,令m=a.
第二步,如果b<m,則m=b.<p="">
第三步,如果c<m,則m=c.<p="">
第四步,輸出m.
如果a=3,b=6,c=2,則執行這個算法的結果是________.
解析:這個算法是求a,b,c三個數中的最小值,故這個算法的結果是2.
答案:2
7.下面給出了一個問題的算法:
第一步,輸入a.
第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.
第三步,輸出y的值.
問:(1)這個算法解決的是什么問題?
(2)當輸入的a的值為多少時,輸出的數值最小?最小值是多少?
解:(1)這個算法解決的是求分段函數
y=2a-1,a≥4,a2-2a+3,a<4的函數值的問題.
(2)當a≥4時,y=2a-1≥7;
當a<4時,y=a2-2a+3=(a-1)2+2≥2,
∵當a=1時,y取得最小值2.
∴當輸入的a值為1時,輸出的數值最小為2.
8.“韓信點兵”問題:韓信是漢高祖手下的大將,他英勇善戰,謀略超群,為漢朝的建立立下了不朽功勛.據說他在一次點兵的時候,為保住軍事秘密,不讓敵人知道自己部隊的軍事實力,采用下述點兵方法:①先令士兵從1~3報數,結果最后一個士兵報2;②又令士兵從1~5報數,結果最后一個士兵報3;③又令士兵從1~7報數,結果最后一個士兵報4.這樣韓信很快算出自己部隊里士兵的總數.請設計一個算法,求出士兵至少有多少人.
解:第一步,首先確定最小的滿足除以3余2的正整數:2.
第二步,依次加3就得到所有除以3余2的正整數:2,5,8,11,14,17,20,….
第三步,在上列數中確定最小的滿足除以5余3的正整數:8.
第四步,然后在自然數內在8的基礎上依次加上15,得到8,23,38,53,….
第五步,在上列數中確定最小的滿足除以7余4的正整數:53.
即士兵至少有53人.
高二數學學習教案篇7
教學準備
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量abcosq叫a與b的數量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).
并規定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0
高二數學學習教案篇8
1.教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.
2.學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1)知識目標:①掌握圓的標準方程;
②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題.
(2)能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
②加深對數形結合思想的理解和加強對待定系數法的運用;
③增強學生用數學的意識.
(3)情感目標:①培養學生主動探究知識、合作交流的意識;
②在體驗數學美的過程中激發學生的學習興趣.
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4.教學重點與難點
(1)重點:圓的標準方程的求法及其應用.
(2)難點:①會根據不同的已知條件求圓的標準方程;
②選擇恰當的坐標系解決與圓有關的實際問題.
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
【二】教法學法分析
1.教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.
2.學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程.
下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高
反饋訓練形成方法小結反思拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖.
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.
(二)深入探究——獲得新知
問題二1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.
(三)應用舉例——鞏固提高
I.直接應用內化新知
問題三1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.
II.靈活應用提升能力
問題四1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.
III.實際應用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.
(四)反饋訓練——形成方法
問題六1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法
①圓心為,半徑為r的圓的標準方程為:
圓心在原點時,半徑為r的圓的標準方程為:.
②已知圓的方程是,經過圓上一點的切線的方程是:.
2.分層作業
(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.
3.激發新疑
問題七1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:
橫向闡述教學設計
(一)突出重點抓住關鍵突破難點
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.
(二)學生主體教師主導探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.
(三)培養思維提升能力激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.
高二數學學習教案篇9
一教學內容分析:
本節內容在教材中有著重要的地位與作用,線性規劃是利用數學為工具來研究一定的人、財、物、時、空等資源在一定的條件下,如何精打細算巧安排,用最少的資源,取得的經濟效益,這一部分內容體現了數學的工具性、應用性,同時滲透了化歸,數形結合的數學思維和解決實際問題的一種重要的解題方法——數學建模法。
二學生學習情況分析:
把實際問題轉化為線性規劃問題,并結合出解答是本節的重點和難點,對許多學生來說,解數學應用題的最常見的困難是不會持實際問題轉化或數學問題,即不會建模,對學生而言,解決應用問題的障礙主要有三類:①不能正確理解題意思,弄清各元素之間的關系;②不能弄清問題的主次關系,因而抓不住問題的本質,無法建立數學模型;③孤立考慮單個問題情境,不能多聯想。
三設計思想:
注意學生的探究過程,讓學生體驗探究問題的成就感,一切以學生的探究活動為主,以問題是驅動,激發學生學習樂趣。
四教學目標:
1、使學生了解線性規劃的意義以及約束條件、目標函數、可行域、可行解、解等基本概念;了解線性規劃問題的圖解法,并能應用它解決一些簡單的實際問題。
2、通過本節內容的學習,培養學生觀察、聯想以及作圖的能力等。滲透集合,化歸,數形結合的數學思想,提問“建?!焙徒鉀Q實際問題的能力。
五教學重點和難點:
教學重點:求線性目標函數的最值問題,培養學生“用數學”的意識,即線性規劃在實際生活中的應用。
教學難點:把實際問題轉化為線性規劃問題,并結合出解答。
六教學過程:
(一)問題引入
某工廠用A、B兩種配件生產甲、乙兩種產品,每生產一會一件甲產品使用4個A配件耗時1個小時,每生產一件乙產品使用4個B配件耗時2小時,該廠每天最多可以配件廠獲得16個A配件和12個B配件,按每天工作8小時計算,該廠所有可能的月生產安排是什么?由學生列出不等關系,并畫出平面區域,由此引入新課。
(二)問題深入,推進新課
①引領學生自主探索引入問題中的實際問題,怎樣安排才有意義?
②若生產一件甲產品獲利2萬元,生產一件乙產品獲利3萬元,采用哪種生產安排利潤?
設計意圖:
由實際問題出發激發學生學習興趣,在探究過程中,看似簡單的問題,學生容易抓不住問題的主干,需要適時的引導。
(三)揭示本質深化認識
提出問題:
①上述探索的問題中,Z的幾何意義是什么?結合圖形說明
②結合以上探究,理解什么是目標函數?線性目標函數?什么是線性規劃?弄清什么是可行域解?可行域?解?
③你能根據以上探究總結出解決線性規劃問題的一般步驟嗎?
(四)應用示例
高二數學學習教案篇10
[核心必知]
1.預習教材,問題導入
根據以下提綱,預習教材P6~P9,回答下列問題.
(1)常見的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框.
(2)算法的基本邏輯結構有哪些?
提示:順序結構、條件結構和循環結構.
2.歸納總結,核心必記
(1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形.
在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執行順序.
(2)常見的程序框、流程線及各自表示的功能
圖形符號名稱功能
終端框(起止框)表示一個算法的起始和結束
輸入、輸出框表示一個算法輸入和輸出的信息
處理框(執行框)賦值、計算
判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”
流程線連接程序框
○連接點連接程序框圖的兩部分
(3)算法的基本邏輯結構
①算法的三種基本邏輯結構
算法的三種基本邏輯結構為順序結構、條件結構和循環結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的.
②順序結構
順序結構是由若干個依次執行的步驟組成的.這是任何一個算法都離不開的基本結構,用程序框圖表示為:
[問題思考]
(1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?
提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束.
(2)順序結構是任何算法都離不開的基本結構嗎?
提示:根據算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構.
[課前反思]
通過以上預習,必須掌握的幾個知識點:
(1)程序框圖的概念:;
(2)常見的程序框、流程線及各自表示的功能:;
(3)算法的三種基本邏輯結構:;
(4)順序結構的概念及其程序框圖的表示:.
問題背景:計算1×2+3×4+5×6+…+99×100.
[思考1]能否設計一個算法,計算這個式子的值.
提示:能.
[思考2]能否采用更簡潔的方式表述上述算法過程.
提示:能,利用程序框圖.
[思考3]畫程序框圖時應遵循怎樣的規則?
名師指津:(1)使用標準的框圖符號.
(2)框圖一般按從上到下、從左到右的方向畫.
(3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框.
(4)在圖形符號內描述的語言要非常簡練清楚.
(5)流程線不要忘記畫箭頭,因為它是反映流程執行先后次序的,如果不畫出箭頭就難以判斷各框的執行順序.
講一講
1.下列關于程序框圖中圖形符號的理解正確的有()
①任何一個流程圖必須有起止框;②輸入框只能放在開始框后,輸出框只能放在結束框前;③判斷框是的具有超過一個退出點的圖形符號;④對于一個程序框圖來說,判斷框內的條件是的.
A.1個B.2個C.3個D.4個
[嘗試解答]任何一個程序必須有開始和結束,從而流程圖必須有起止框,①正確.輸入、輸出框可以用在算法中任何需要輸入、輸出的位置,②錯誤.③正確.判斷框內的條件不是的,④錯誤.故選B.
答案:B
畫程序框圖時應注意的問題
(1)畫流程線不要忘記畫箭頭;
(2)由于判斷框的退出點在任何情況下都是根據條件去執行其中的一種結果,而另一個則不會被執行,故判斷框后的流程線應根據情況注明“是”或“否”.
練一練
1.下列關于程序框圖的說法中正確的個數是()
①用程序框圖表示算法直觀、形象、容易理解;②程序框圖能夠清楚地展現算法的邏輯結構,也就是通常所說的“一圖勝萬言”;③在程序框圖中,起止框是任何程序框圖中不可少的;④輸入和輸出框可以在算法中任何需要輸入、輸出的位置.
A.1B.2C.3D.4
解析:選D由程序框圖的定義知,①②③④均正確,故選D.
觀察如圖所示的內容:
[思考1]順序結構有哪些結構特征?
名師指津:順序結構的結構特征:
(1)順序結構的語句與語句之間、框與框之間按從上到下的順序執行,不會引起程序步驟的跳轉.
(2)順序結構是最簡單的算法結構.
(3)順序結構只能解決一些簡單的問題.
[思考2]順序結構程序框圖的基本特征是什么?
名師指津:順序結構程序框圖的基本特征:
(1)必須有兩個起止框,穿插輸入、輸出框和處理框,沒有判斷框.
(2)各程序框用流程線依次連接.
(3)處理框按計算機執行順序沿流程線依次排列.
講一講
2.已知P0(x0,y0)和直線l:Ax+By+C=0,寫出求點P0到直線l的距離d的算法,并用程序框圖來描述.
[嘗試解答]第一步,輸入x0,y0,A,B,C;
第二步,計算m=Ax0+By0+C;
第三步,計算n=A2+B2;
第四步,計算d=mn;
第五步,輸出d.
程序框圖如圖所示.
應用順序結構表示算法的步驟:
(1)仔細審題,理清題意,找到解決問題的方法.
(2)梳理解題步驟.
(3)用數學語言描述算法,明確輸入量,計算過程,輸出量.
(4)用程序框圖表示算法過程.
練一練
2.寫出解不等式2x+1>0的一個算法,并畫出程序框圖.
解:第一步,將1移到不等式的右邊;
第二步,不等式的兩端同乘12;
第三步,得到x>-12并輸出.
程序框圖如圖所示:
