數學七年級教案課件
好的教案應該有及時的教學反思,對本次教學過程中的優(yōu)缺點進行總結和反思,為今后的教學提供經驗和啟示。什么才算好的數學七年級教案課件?接下來給大家分享一些數學七年級教案課件,供大家參考。
數學七年級教案課件篇1
教學目標
1.能夠根據具體問題中數量關系,列出一元一次不等式組,解決簡單問題。
2.滲透“數學建模”思想?;碚摗?/p>
3.提高分析問題解決問題能力。
教學重點
分析實際問題列不等式組。
教學難點
1.找實際問題中的不等關系列不等式組。
2.有條理的表達思考過程。
教學過程
一、創(chuàng)設問題情境。
本節(jié)課我們一起學習用一元一次不等式組解決一些簡單的實際問題。
出示問題:
某公園售出一次性使用門票,每張10元。為吸引更多游客,新近推出購買“個人年票”的售票方法。年票分A、B兩類。A類年票每張100元,持票者每次進入公園無需再購買門票。B類年票每張50元,持票者進入公園時需再購買每次2元的門票。你能知道某游客一年中進入該公園至少超過多少次,購買A類年票最合算嗎?
二、建立模形。
1.分析題意回答:
①游客購買門票,有幾種選取擇方式?
②設某游客選取擇了某種門票,一年進入該公園x次,門票支出是多少?
③買A類年票最合算,應滿足什么關系?
2.討論交流,列出不等式組。
3.解不等式組,說出問題的答案。
三、應用。
學生討論、交流。
1.什么情況下,購買每次10元的門票最合算。
2.什么情況下,購買B類年票最合算?
學生清晰、有條理地表達自己的思考過程,且考慮問題要全面。
四、練習。
某校安排寄宿時,如果每項間宿舍住7人,那么有1間雖有人住,但沒住滿。如果每間宿舍住4人,那么有100名學生住不下。問該校有多少寄宿生?有多少間宿舍?
(提示學生找到本題中的兩個不等關系。學生人數,宿舍間數都為整數。解本題時,先獨立思考,再小組交流)
五、小結
列一元一次不等式組,解決實際問題的基本步驟是什么?(討論、交流,指名回答)
數學七年級教案課件篇2
第五章相交線與平行線
一、知識結構
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:有一個公共端點一個角的兩邊是另一個角兩邊的反向延長線線。
對頂角性質:對頂角相等。
垂線:1.當兩直線相交,有一個夾角為90°時這兩條直線垂直.a⊥b讀做a垂直于b垂足為O
2.兩直線相交構成四個夾角相等,兩直線互相垂直。其中一條直線叫做另一條直線的垂線。垂直性質1:過一點有且僅有一條直線,與以已知直線垂直。
垂直性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
平行線定義:在同一平面內永不相交的兩條直線。記作a∥b讀作:a平行于b
平行線公理:
1.經過直線外一點,有且只有一條直線于已知直線平行。
2.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行
平行判定方法:
1.同位角相等,兩直線平行。如果∠1=∠2那么a∥b
2.內錯角相等,兩直線平行如果∠2=∠3那么a∥b
3.同旁內角互補,兩直線平行?!螦+∠B=180°那么兩直線平行。
平行線的性質:
1.兩直線平行,同位角相等?!遖∥b∴∠1=∠2
2.兩直線平行,內錯角相等?!遖∥b∴∠3=∠4
3.兩直線平行,同位角互補∵a∥b∴∠3+∠4=180°
命題:判斷一件事情的語句。
1.命題的結構,命題由題設(已知事項或條件)推出的結論(由已知事項推出的事項)
2.任何命題都可以改寫成如果那么的形式,如果后面引導題設,那么后面引導結論。
真命題:題設成立,結論成立
假命題:題設成立,結論不成立
兩點之間的距離:連接兩點的線段的長度叫做兩點間的距離。
兩條平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的垂線段,叫做這兩條平行線的距離。平行線間的距離,處處相等。
平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
1.平移不改變物體的大小○2.平移前后對應點的直線相等:且互相平行?!?/p>
對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
數學七年級教案課件篇3
教學目標:
1.借助數軸了解相反數的概念,知道互為相反數的位置關系.
2.給一個數,能求出它的相反數.
教學重點:理解相反數的意義.
教學難點:理解和掌握雙重符號簡化的規(guī)律.
教與學互動設計:
(一)創(chuàng)設情境,導入新課
活動請一個學生到講臺前面對大家,向前走5步,向后走5步.
交流如果向前走為正,那向前走5步與向后走5步分別記作什么?
(二)合作交流,解讀探究
1.觀察下列數:6和-6,2和-2,7和-7,和-,并把它們在數軸上標出.
想一想(1)上述各對數有什么特點?
(2)表示這四對數的點在數軸上有什么特點?
(3)你能夠寫出具有上述特點的n組數嗎?
觀察像這樣只有符號不同的兩個數叫相反數.
互為相反數的兩個數在數軸上的對應點(0除外)是在原點兩旁,并且與原點距離相等的兩個點.即:我們把a的相反數記為-a,并且規(guī)定0的相反數就是零.
總結在正數前面添上一個“-”號,就得到這個正數的相反數,是一個負數;把負數前的“-”號去掉,就得到這個負數的相反數,是一個正數.
2.在任意一個數前面添上“-”號,新的數就是原數的相反數.如-(+5)=-5,表示+5的相反數為-5;-(-5)=5,表示-5的相反數是5;-0=0,表示0的相反數是0.
(三)應用遷移,鞏固提高
【例1】填空
(1)-5.8是的相反數,的相反數是-(+3),a的相反數是;a-b的相反數是,0的相反數是.
(2)正數的相反數是,負數的相反數是,的相反數是它本身.
【例2】下列判斷不正確的有()
①互為相反數的兩個數一定不相等;②互為相反數的數在數軸上的點一定在原點的兩邊;③所有的有理數都有相反數;④相反數是符號相反的兩個點.
A.1個B.2個C.3個D.4個
【例3】 化簡下列各符號:
(1)-[-(-2)];(2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n個負號).
【歸納】 化簡的規(guī)律是:有偶數個負號,結果為正;有奇數個負號,結果為負.
【例4】 數軸上A點表示+4,B、C兩點所表示的數是互為相反數,且C到A的距離為2,則點B和點C各對應什么數?
(四)總結反思,拓展升華
【歸納】(1)相反數的概念及表示方法.
(2)相反數的代數意義和幾何意義.
(3)符號的化簡.
(五)課堂跟蹤反饋
夯實基礎
1.判斷題
(1)-3是相反數.()
(2)-7和7是相反數.()
(3)-a的相反數是a,它們互為相反數.()
(4)符號不同的兩個數互為相反數.()
2.分別寫出下列各數的相反數,并把它們在數軸上表示出來.
1,-2,0,4.5,-2.5,3
3.若一個數的相反數不是正數,則這個數一定是()
A.正數B.正數或0
C.負數 D.負數或0
4.一個數比它的相反數小,這個數是()
A.正數 B.負數
C.非負數D.非正數
5.數軸上表示互為相反數的兩個點之間的距離為4,則這兩個數是.
提升能力
6.若a與a-2互為相反數,則a的相反數是.
7.已知有理數m、-3、n在數軸上位置如圖所示,將m、-3、n的相反數在數軸上表示出來,并將這6個數用“<”連接起來.
數學七年級教案課件篇4
教學目標
知識與技能:
(1)讓學生會推導完全平方公式,并能進行簡單的應用.
(2)了解完全平方公式的幾何背景.
數學能力:
(1)由學生經歷探索完全平方公式的過程,進一步發(fā)展學生的符號感與推理能力.
(2)發(fā)展學生的數形結合的數學思想.
情感與態(tài)度:
將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.
三、教學重難點
教學重點:1、完全平方公式的推導;
2、完全平方公式的應用;
教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;
2、完全平方公式結構的認知及正確應用.
四、教學設計分析
本節(jié)課設計了十一個教學環(huán)節(jié):學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.
第一環(huán)節(jié):學生練習、暴露問題
活動內容:計算:(a+2)2
設想學生的做法有以下幾種可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正確做法;
針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?
活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.
第二環(huán)節(jié):驗證(a+2)2=a2–4a+22
活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動目的:在前一環(huán)節(jié)已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.
第三環(huán)節(jié):推廣到一般情況,形成公式
活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發(fā)現的快樂.
第四環(huán)節(jié):數形結合
活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.
學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發(fā)展學生的數形結合的數學思想.
第五環(huán)節(jié):進一步拓廣
活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.
第六環(huán)節(jié):總結口訣、認識特征
活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;
②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.
第七環(huán)節(jié):公式應用
活動內容:例:計算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動目的:在前幾個環(huán)節(jié)中,學生對完全平方公式已經有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.
第八環(huán)節(jié):隨堂練習
活動內容:計算:①;②;③(n+1)2–n2
活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.
第九環(huán)節(jié):學生PK
活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.
活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.
第十環(huán)節(jié):學生反思
活動內容:通過今天這堂課的學習,你有哪些收獲?
收獲1:認識了完全平方公式,并能簡單應用;
收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;
收獲3:感受到數形結合的數學思想在數學中的作用.
活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.
第十一環(huán)節(jié):布置作業(yè):
課本P43習題1.13
數學七年級教案課件篇5
教學目標1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質來解決問題
教學重點:平行四邊形的判定方法及應用
教學難點:平行四邊形的判定定理與性質定理的靈活應用
引
小明的父親手中有一些木條,他想通過適當的測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?
二.探
閱讀教材P44至P45
利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
證一證
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)
三.結
兩組對邊分別相等的四邊形是平行四邊形。
對角線互相平分的四邊形是平行四邊形。
四.用
【例題】
例、已知:如圖所示,在ABCD中,E、F分別為AB、CD的中點,求證四邊形AECF是平行四邊形.
【練習】
1、已知:四邊形ABCD中,AD∥BC,要使四邊形ABCD為平行四邊形,
需要增加條件.(只需填上一個你認為正確的即可).
2、如圖所示,在ABCD中,E,F分別是對角線BD上的兩點,
且BE=DF,要證明四邊形AECF是平行四邊形,最簡單的方法
是根據來證明.
作業(yè)P46練習1、2題
板書設計
平行四邊形的性質
定理:平行四邊形的性質例題練習
教學反思
數學七年級教案課件篇6
教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學.
(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.
二、教法與學法分析:
學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.
三、教學過程設計1.創(chuàng)設情境,提出問題2.實驗操作,模型構建3.回歸生活,應用新知
4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)
(一)創(chuàng)設情境提出問題
(1)圖片欣賞勾股定理數形圖1955年希臘發(fā)行美麗的勾股樹2002年國際數學的一枚紀念郵票大會會標設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值.
(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié).
二、實驗操作模型構建
1.等腰直角三角形(數格子)
2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結勾股定理.
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊——一般的認知規(guī)律.
三.回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎題,情境題,探索題.
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展.知識的運用得到升華.
基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè):1、課本習題2.12、搜集有關勾股定理證明的資料.
板書設計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設計說明::1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.
數學七年級教案課件篇7
教學目標:
1.掌握數軸三要素,能正確畫出數軸.
2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.
教學重點:數軸的概念.
教學難點:從直觀認識到理性認識,從而建立數軸概念.
教與學互動設計:
(一)創(chuàng)設情境,導入新課
課件展示課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節(jié)要學的內容——數軸.
【點撥】(1)引導學生學會畫數軸.
第一步:畫直線,定原點.
第二步:規(guī)定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當的長度為單位長度(據情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.
對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數軸:
規(guī)定了原點、正方向和單位長度的直線叫數軸.
做一做學生自己練習畫出數軸.
試一試你能利用你自己畫的數軸上的點來表示數4,1.5,-3,-2,0嗎?
討論若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結整數在數軸上都能找到點表示嗎?分數呢?
可見,所有的都可以用數軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】 下列所畫數軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
①數軸上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有()
A.1個B.2個C.3個D.4個
【例4】在數軸上表示-2和1,并根據數軸指出所有大于-2而小于1的整數.
【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為2000cm的線段AB,則線段AB蓋住的整點有()
A.1998個或1999個B.1999個或2000個
C.2000個或20__個D.20__個或20__個
(四)總結反思,拓展升華
數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.
(五)課堂跟蹤反饋
夯實基礎
1.規(guī)定了、、的直線叫做數軸,所有的有理數都可從用上的點來表示.
2.P從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數是.
3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是()
A.7 B.-3
C.7或-3D.不能確定
4.在數軸上,原點及原點左邊的點所表示的數是()
A.正數B.負數
C.不是負數D.不是正數
5.數軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數軸,并把下列數表示在數軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數軸上,最多能覆蓋個整數點.
9.下列四個數中,在-2到0之間的數是()
A.-1B.1 C.-3D.3
數學七年級教案課件篇8
5.1相交線
[教學目標]
1.通過動手、操作、推斷、交流等活動,進一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達能力
2.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一.創(chuàng)設情境 激發(fā)好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達
;
有公共的頂點O,而且的兩邊分別是兩邊的反向延長線
2.學生用量角器分別量一量各角的度數,發(fā)現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)
3學生根據觀察和度量完成下表:
兩條直線相交所形成的角分類位置關系數量關系
教師提問:如果改變的大小,會改變它與其它角的位置關系和數量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質
三.初步應用
練習:
下列說法對不對
(1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3)對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四.鞏固運用例題:如圖,直線a,b相交,,求的度數。
[鞏固練習](教科書5頁練習)已知,如圖,,求:的度數
[小結]
鄰補角、對頂角.
[作業(yè)]課本P9-1,2P10-7,8
[備選題]
一判斷題:
如果兩個角有公共頂點和一條公共過,而且這兩個角互為補角,那么它們互為鄰補角( )
兩條直線相交,如果它們所成的鄰補角相等,那么一對對頂角就互補( )
二填空題
1如圖,直線AB、CD、EF相交于點O,的對頂角是 ,的鄰補角是
若:=2:3,,則=
2如圖,直線AB、CD相交于點O
則
5.1.2 垂線
[教學目標]
1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2.掌握點到直線的距離的概念,并會度量點到直線的距離。
3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一. 復習提問:
1、敘述鄰補角及對頂角的定義。
2、對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1 過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中(我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2 連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點P到直線l的距離。
例1
(1)AB與AC互相垂直;
(2)AD與AC互相垂直;
(3)點C到AB的垂線段是線段AB;
(4)點A到BC的距離是線段AD;
(5)線段AB的長度是點B到AC的距離;
(6)線段AB是點B到AC的距離。
其中正確的有( )
A. 1個 B. 2個
C. 3個 D. 4個
解:A
例2如圖,直線AB,CD相交于點O,
解:略
例3如圖,一輛汽車在直線形公路AB上由A
向B行駛,M,N分別是位于公路兩側的村莊,
設汽車行駛到點P位置時,距離村莊M最近,
行駛到點Q位置時,距離村莊N最近,請在圖中公路AB上分別畫出P,Q兩點位置。
練習:
1.
2.教材第9頁3、4
教材第10頁9、10、11、12
小結:
1.要掌握好垂線、垂線段、點到直線的距離這幾個概念;
2.要清楚垂線是相交線的特殊情況,與上節(jié)知識聯系好,并能正確利用工具畫出標準圖形;
3.垂線的性質為今后知識的學習奠定了基礎,應該熟練掌握。
作業(yè):教材第9頁5、6.
數學七年級教案課件篇9
教學目標
1使學生掌握代數式的值的概念,能用具體數值代替代數式中的字母,求出代數式的值;
2培養(yǎng)學生準確地運算能力,并適當地滲透特殊與一般的辨證關系的思想。
教學重點和難點
重點和難點:正確地求出代數式的值
課堂教學過程設計
一、從學生原有的認識結構提出問題
1用代數式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數的平方和;
(3)a與b的和的50%
2用語言敘述代數式2n+10的意義
3對于第2題中的代數式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)
某學校為了開展體育活動,要添置一批排球,每班配2個,學校另外留10個,如果這個學校共有n個班,總共需多少個排球?
若學校有15個班(即n=15),則添置排球總數為多少個?若有20個班呢?
最后,教師根據學生的回答情況,指出:需要添置排球總數,是隨著班數的確定而確定的;當班數n取不同的數值時,代數式2n+10的計算結果也不同,顯然,當n=15時,代數式的值是40;當n=20時,代數式的值是50我們將上面計算的結果40和50,稱為代數式2n+10當n=15和n=20時的值這就是本節(jié)課我們將要學習研究的內容
二、師生共同研究代數式的值的意義
1用數值代替代數式里的字母,按代數式指明的運算,計算后所得的結果,叫做代數式的值
2結合上述例題,提出如下幾個問題:
(1)求代數式2x+10的值,必須給出什么條件?
(2)代數式的值是由什么值的確定而確定的?
當教師引導學生說出:“代數式的值是由代數式里字母的取值的確定而確定的”之后,可用圖示幫助學生加深印象
然后,教師指出:只要代數式里的字母給定一個確定的值,代數式就有確定的值與它對應
(3)求代數式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?
下面教師結合例題來引導學生歸納,概括出上述問題的答案(教師板書例題時,應注意格式規(guī)范化)
例1當x=7,y=4,z=0時,求代數式x(2x-y+3z)的值
解:當x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數式中省略乘號,代入后需添上乘號
例2根據下面a,b的值,求代數式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)當a=4,b=12時,
a2-=42-=16-3=13;
(2)當a=1,b=1時,
a2-=-=
注意(1)如果字母取值是分數,作乘方運算時要加括號;
(2)注意書寫格式,“當……時”的字樣不要丟;
(3)代數式里的字母可取不同的值,但是所取的值不應當使代數式或代數式所表示的數量關系失去實際意義,如此例中a不能為零,在代數式2n+10中,n是代數班的個數,n不能取分數最后,請學生總結出求代數值的步驟:①代入數值②計算結果
三、課堂練習
1(1)當x=2時,求代數式x2-1的值;
(2)當x=,y=時,求代數式x(x-y)的值
2當a=,b=時,求下列代數式的值:
(1)(a+b)2;(2)(a-b)2
3當x=5,y=3時,求代數式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、師生共同小結
首先,請學生回答下面問題:
1本節(jié)課學習了哪些內容?
2求代數式的值應分哪幾步?
3在“代入”這一步應注意什么”
其次,結合學生的回答,教師指出:(1)求代數式的值,就是用數值代替代數式里的字母按照代數式的運算順序,直接計算后所得的結果就叫做代數式的值;(2)代數式的值是由代數式里字母所取值的確定而確定的.
五、作業(yè)
當a=2,b=1,c=3時,求下列代數式的值:
(1)c-(c-a)(c-b);(2).
數學七年級教案課件篇10
教學目標:
1、理解平行線之間的距離的概念。
2、能夠測量兩條平行線之間的距離,會畫到已知直線已知距離的平行線。
3、通過平行線之間的距離轉化為點到直線的距離,使學生初步體驗轉化的數學思想。
教學重點:理解平行線之間的距離的概念,掌握它與點到直線的距離的關系。
教學難點:畫到已知直線已知距離的平行線。
教學過程:
一、 準備知識
1、點到直線距離。
2、直線外一點與直線上各點連結的所有線段中,垂線段最短。
3、三條直線的平行關系。
二、探究新知
1、做一做。
測量自己的數學課本的寬度。要注意什么問題?刻度尺要與課本兩邊互相垂直。
2、公垂線、公垂線段的概念
與兩條平行直線都垂直的直線,叫做這兩條平行直線的公垂線。如圖形中的直線AB與CD都是公垂線,這時連結兩個垂足的線段,叫做這兩條平行直線的公垂線段。圖中的線段AB和CD。兩平行線的公垂線段也可以看成是兩平行直線中一條上的一點到另一條的垂線段。
3、公垂線段定理:兩平行線的所有公垂線段都相等。
4、兩平行線上各取一點連結而成的所有線段中,公垂線段最短。
如圖m∥n,直線m、n上各取一點A、B,連結AB。再過A作n線段的垂線段AC,垂足為C,則有AC從而得到上述定理。
5、兩平行間的距離:兩平行線的公垂線段的長度。
6、范例分析
P76例 如圖設直線a、b、c是三條平行直線。已知a與b的距離為5厘米,b與c的距離為2厘米,求a與c的距離。
引導學生分析,然后按教材寫出解題過程:
解:在直線a上任取一點A,過A作AC⊥a,分別交b、c于B、C兩點,則AB、BC、AC分別表示a與b,b與c,a與c的公垂線段。AC=AB+BC=5+2=7,因此a與c的距離為7厘米。
三、小結練習
1、練習P76 P77的A組2題
2、課堂小結
四、布置作業(yè)
P77的A組第1、3題
后記:
數學七年級教案課件篇11
教學內容
人教版《義務教育課程標準實驗教科書數學》六年級上冊
教學目標
1.使學生通過繞一繞、滾一滾等活動,自主探索圓的周長與直徑的倍數關系。知道圓周率的含義,并能推導出圓的周長公式,學會運用公式解決簡單的求圓周長的實際問題。
2.使學生在活動中培養(yǎng)初步的動手操作能力和空間觀念。
3.結合圓周率的教學,使學生感受數學的文化價值,激發(fā)學習數學的興趣。
教學過程
一、復習導入
師:這一節(jié)課我們來研究有關周長的問題。
出示正方形
師:看屏幕,認識嗎?
師:這是一個(正方形)
師:誰來指一指它的周長
生上臺指。
師完整指:正方形4條邊的總長就是它的周長。
出示圓
師:繼續(xù)看,這是。
生:圓
師:圓的周長你能指一指嗎?
生上臺指
師:我們一起來指一指!從一點開始,繞一圈,回到這一點里結束??辞宄藛?(出示動畫)
師:圍成圓一周曲線的長度就是圓的周長
【板書:圓的周長】
二、感知化曲為直
1、師:2個圖形,分別為1號和2號。(給圖形標號。)
師:給你一把直尺,(慢慢的拿出來)。讓你通過測量得到它們的周長,【板書:量】你愿意測量幾號?
師:想想,用手勢1或者2告訴老師……怎么想的?
……
師:對,正方形是由線段圍成的,可以用直尺直接測量。
而圍成圓的——是一條曲線【板書:曲】,直接量確實不太方便。
師:不過呢,老師今天就是要為難一下你們,要求用直尺直接量出圓的周長,這可是要想辦法的哦!敢不敢挑戰(zhàn)?
2、用直尺測量圓的周長
(1)熒光圈
師:看,什么?(圓形的熒光圈)怎樣量它的周長?
生:把接頭拔下來,拉直了量。
師:像這樣!斷開,拉直測量!
把接頭部分去掉,這一段的長就是熒光圈的周長。
這個方法很不錯哦!
(2)飛鏢盤
師:繼續(xù)挑戰(zhàn)!第二樣,什么?(圓形的飛鏢盤)能拉直量嗎?
怎么辦呢?
生:用線繞。
課件演示:線貼緊圓繞一周,多余部分去掉或者做上記號,然后把線拉直測量,這一段線的長就是圓的周長。
師:還有其他辦法嗎?
生:滾
數學七年級教案課件篇12
教學目標:
1、使學生結合現實情境,用平移的方法探索并發(fā)現把圖形分別沿兩個方向進行平移后被該圖形覆蓋的次數的規(guī)律,會根據平移次數推算把圖形分別沿兩個方向進行平移后被該圖形覆蓋的總次數,解決相應的實際問題。
2、使學生主動經歷自主探究和合作交流的過程,體會有序列舉和思考是解決問題的基本策略之一,進一步培養(yǎng)發(fā)現和概括規(guī)律的能力,初步形成回顧與反思探索規(guī)律過程的意識。
教學重、難點:探索把圖形分別沿兩個方向進行平移后被該圖形覆蓋的次數的規(guī)律
教學過程:
一、探索規(guī)律
1、 拓展延伸 出示例2,理解圖意指名說說(1)浴室的一面墻長有8格,寬有6格;(2)理解問題
2、你準備怎樣來貼瓷磚,才能做到既不重復,又不遺漏?
同桌討論后全班交流,明確方法:可以從左上角開始有次序地進行平移,可以向右平移,也可以向左平移。
3、學生動手操作,操作完后思考:你是沿著什么方向貼的?平移了幾次?有幾種貼法?
4、交流匯報,引導思考:
(1)沿著這面墻的長貼一行有多少種貼法?(平移6次,可以有7種貼法)沿著這面墻的寬貼一列有多少種貼法?(平移4次,可以有5種貼法)
(2)一共有多少種貼法呢?(5×7=35種)
聯系剛才的操作過程想一想:一共有多少種貼法與沿這面墻的長和寬貼各有多少種貼法是什么關系?你是怎么想的?(就是求5個7或7個5是多少)
5、小結:我們發(fā)現沿著長貼有7種貼法,沿著寬貼有5種貼法,所以一共有7×5=35種貼法。
二、運用規(guī)律
1、完成“試一試”
(1)你能用我們發(fā)現的規(guī)律來完成這道題嗎?出示“試一試”這個圖形你會把它平移嗎?小組討論,明確可以把“凸”字形看作長方形。
(2)想一想,有多少種不同的貼法?獨立思考后和小組里的同學說說。
(3)交流,引導學生有條理的表達思考過程。(沿著長有6種貼法,沿著長有5種貼法,所以一共有6×5=30種貼法)
2、完成練一練
小軍打算在陽臺上的一面墻上貼花磚,請你算一算,有多少種不同的貼法?
學生獨立完成后交流思考的過程。
3、完成P59第3題
(1)仔細審題后,動手框一框,并算一算5個數的和。
(2)任意框幾次,看看每次框出的5個數的和與中間的數有什么關系?
小結:每次框出的5個數的和就等于中間的數乘5。
(3)如果框出的5個數的和是180,應該怎樣框?能框出和是100的5個數嗎?為什么?
獨立思考后解答。
(4)一共可以框出多少個不同的和?獨立思考后同桌說說,學生解答后再組織交流思考過程。
4、完成練習冊上的相關習題。
三、全課總結
1、通過這節(jié)課的學習,你有哪些收獲呢?
2、 學生質疑。
數學七年級教案課件篇13
教學目標
1.使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;
2.培養(yǎng)學生動手操作的能力,啟發(fā)思維,開闊思路;
3.滲透初步的辯證唯物主義思想。
教學重點和難點
圓面積公式的推導方法。
教學過程設計
(一)復習準備
我們已經學習了圓的認識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關系?
已知半徑,圓周長的一半怎么求?
(出示一個整圓)哪部分是圓的面積?(指名用手指一指。)
這節(jié)課我們一起來學習圓的面積怎么計算。
(板書課題:圓的面積)
(二)學習新課
1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉化成已知學過的圖形推導出來的,怎樣計算圓的面積呢?我們也要把圓轉化成已學過的圖形,然后推導出圓面積的計算公式。
決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數據,沿半徑把圓分成若干等份。
展示曲變直的變化圖。
2.動手操作學具,推導圓面積公式。
為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的平面圖形。
思考:
(1)你擺的是什么圖形?
(2)所擺的圖形面積與圓面積有什么關系?
(3)圖形的各部分相當于圓的什么?
(4)你如何推導出圓的面積?
(學生開始動手擺,小組討論。)
指名發(fā)言。(在幻燈前邊說邊擺。)
①拼出長方形,學生敘述,老師板書:
②還能不能拼出其它圖形?
學生可以拼出:等等剛才,我們用不同思路都能推導出圓面積的公式是:S=r2。這幾種思路的共同特點都是將圓轉化成已學過的圖形,并根據轉化后的圖形與圓面積的關系推導出面積公式。
例1一個圓的半徑是4厘米,它的面積是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面積是50.24平方厘米。
想一想;求圓面積S應知道什么?如果給d和C,又怎樣求圓面積?
(三)鞏固反饋
1.求下面各圓的面積。
r=2(單位:分米)d=6(單位:分米)
2.選擇題。
用2米長的繩子把小羊拴在草地上的木框上,羊吃到地上的草的最大面積是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考題:
已知正方形的面積是18平方米,求圓的面積。(如圖)
課堂教學設計說明
1.使學生運用遷移的方法,把新知識轉化為舊知識,把圓轉化成已經學過的圖形。
2.在面積公式推導過程中,老師介紹分割圓的方法,展示由曲變直的過程,然后引導學生動手操作,小組討論,從各個角度推導出圓面積公式。培養(yǎng)學生動手操作,口頭表達和邏輯思維的能力,滲透了極限和轉化思想。
3.安排了坡度適當、由易到難的練習題,使學生由淺入深地掌握了知識,形成了技能。同時,還注意培養(yǎng)學生邏輯推理的能力。
數學七年級教案課件篇14
一:教材分析:(說教材)
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節(jié)的重點和難點,同時也是本章節(jié)的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養(yǎng)他們對數學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(A)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
(B)
通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:
通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關系;
(2)找出相等關系后不會列方程;
(3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:
學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:
學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發(fā)式教學的原則
教學的理論依據是:
1:必須先明確根據應用題題意列方程是重點,同時也是
難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相
等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓
學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表
示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例
1中,不能把“設原來有X千克面粉”寫成“設原來有X”。另外,在列方程中,各代數式的單位應該是相同的,如例1中,代數式“X
”“—15%X”“42500
”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例
1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
數學七年級教案課件篇15
教學目標
1.使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來;
2.初步培養(yǎng)學生觀察、分析和抽象思維的能力.
教學重點和難點
重點:列代數式.
難點:弄清楚語句中各數量的意義及相互關系.
課堂教學過程設計
一、從學生原有的認知結構提出問題
1?用代數式表示乙數:(投影)
(1)乙數比x大5;(x+5)
(2)乙數比x的2倍小3;(2x-3)
(3)乙數比x的倒數小7;(-7)
(4)乙數比x大16%?((1+16%)x)
(應用引導的方法啟發(fā)學生解答本題)
2?在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式?本節(jié)課我們就來一起學習這個問題?
二、講授新課
例1用代數式表示乙數:
(1)乙數比甲數大5;(2)乙數比甲數的2倍小3;
(3)乙數比甲數的倒數小7;(4)乙數比甲數大16%?
分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數?
解:設甲數為x,則乙數的代數式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本題應由學生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2用代數式表示:
(1)甲乙兩數和的2倍;
(2)甲數的與乙數的的差;
(3)甲乙兩數的平方和;
(4)甲乙兩數的和與甲乙兩數的差的積;
(5)乙甲兩數之和與乙甲兩數的差的積?
分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式?
解:設甲數為a,乙數為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本題應由學生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?
例3用代數式表示:
(1)被3整除得n的數;
(2)被5除商m余2的數?
分析本題時,可提出以下問題:
(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?
(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?
解:(1)3n;(2)5m+2?
(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)?
例4設字母a表示一個數,用代數式表示:
(1)這個數與5的和的3倍;(2)這個數與1的差的;
(3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的的和?
分析:啟發(fā)學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養(yǎng)學生分析問題和解決問題的能力?)
例5設教室里座位的行數是m,用代數式表示:
(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?
(2)教室里座位的行數是每行座位數的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數=每行的座位數×行數)
解:(1)m(m+6)個;(2)(m)m個?
三、課堂練習
1?設甲數為x,乙數為y,用代數式表示:(投影)
(1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差;
(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商?
2?用代數式表示:
(1)比a與b的和小3的數;(2)比a與b的差的一半大1的數;
(3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數?
3?用代數式表示:
(1)與a-1的和是25的數;(2)與2b+1的積是9的數;
(3)與2x2的差是x的數;(4)除以(y+3)的商是y的數?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
四、師生共同小結
首先,請學生回答:
1?怎樣列代數式?2?列代數式的關鍵是什么?
其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規(guī)律列代數式:
(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);
(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;
(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握?
五、作業(yè)
1?用代數式表示:
(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?
(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?
2?已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學法探究
已知圓環(huán)內直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看有沒有規(guī)律.
當圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:
=99a+b(cm)
