初一數學的教案
編寫教案時,教案中教學步驟要具體、明確,各步驟銜接要自然、緊湊。好的初一數學的教案應該怎么寫?快來看看,小編給大家分享初一數學的教案的寫作技巧和示例,供大家參考!
初一數學的教案篇1
一、教學內容分析
1。2有理數1。2。2數軸。這一節是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的方法。日常生活中帶見的用溫度計度量溫度,已為學習數軸概念打下了一定的基礎。通過問題情境類比得到數軸的概念,是這節課的主要學習方法。同時,數軸又能將數的分類直觀的表現出來,是學生領悟分類思想的基礎。
二、學生學習情況分析
(1)知識掌握上,七年級的學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述;
(2)學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析;
(3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生的主動性。
三、設計思想
從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學目標
(一)知識與技能
1、掌握數軸的三要素,能正確畫出數軸。
2、能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。
(二)過程與方法
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。
2、對學生滲透數形結合的思想方法。
(三)情感、態度與價值觀
1、使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。
2、通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
五、教學重點及難點
1、重點:正確掌握數軸畫法和用數軸上的點表示有理數。
2、難點:有理數和數軸上的點的對應關系。
六、教學建議
1、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
2、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下:
定義規定了原點、正方向、單位長度的直線叫數軸
三要素原點正方向單位長度
應用數形結合
七、學法引導
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法。
2、學生學法:動手畫數軸,動腦概括數軸的三要素,動手、動腦做練習。
八、課時安排
1課時
九、教具學具準備
電腦、投影儀、三角板
十、師生互動活動設計
講授新課
(出示投影1)
問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。
師:三個溫度計所表示的溫度是多少?
生:2℃,—5℃,0℃。
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)
師:我們能否用類似的圖形表示有理數呢?
師:這種表示數的圖形就是今天我們要學的內容—數軸(板書課題)。
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀
數,用直線上的點表示正數、負數和零。具體方法如下
(邊說邊畫):
1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2。規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3。選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…
師問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
讓學生觀察畫好的直線,思考以下問題:
(出示投影2)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示—1的點在什么位置?
(4)原點向右0。5個單位長度的A點表示什么數?
原點向左1。5個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義。
師:在此基礎上,給出數軸的定義,即規定了原點、正方向和單
位長度的直線叫做數軸。
進而提問學生:在數軸上,已知一點P表示數—5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可。
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力。
師生同步畫數軸,學生概括數軸三要素,師出示投影,生動手動腦練習
嘗試反饋,鞏固練習
(出示投影3)。畫出數軸并表示下列有理數:
1、1。5,—2。2,—2。5,,,0。
2。寫出數軸上點A,B,C,D,E所表示的數:
請大家回答下列問題:
(出示投影4)
(1)有人說一條直線是一條數軸,對不對?為什么?
(2)下列所畫數軸對不對?如果不對,指出錯在哪里?
【教法說明】此組練習的目的是鞏固數軸的概念。
十一、小結
本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究。
十二、課后練習習題1。2第2題
十三、教學反思
1、數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。
2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3、注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。
初一數學的教案篇2
教學目標和要求:
1.理解單項式及單項式系數、次數的概念.
2.會準確迅速地確定一個單項式的系數和次數.
3.初步培養學生觀察、分析、抽象、概括等思維能力和應用意識.
4.通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力.
教學重點和難點:
重點:掌握單項式及單項式的系數、次數的概念,并會準確迅速地確定一個單項式的系數和次數.難點:單項式概念的建立.
教學過程:
一、復習引入:
1、列代數式
(數學教學要緊密聯系學生的生活實際,這是新課程標準所賦予的任務.讓學生列代數式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育.)
2、請學生說出所列代數式的意義.
3、請學生觀察所列代數式包含哪些運算,有何共同運算特征.
由小組討論后,經小組推薦人員回答,教師適當點撥.
(充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,可極大的激發學生學習的積極性和主動性,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性.)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并歸納得出單項式的概念:由數與字母的乘積組成的代數式稱為單項式.然后教師補充,單獨一個數或一個字母也是單項式,
如a,5.
2.練習:判斷下列各代數式哪些是單項式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉入單項式的系數和次數的教學)
3.單項式系數和次數:
直接引導學生進一步觀察單項式結構,總結出單項式是由數字因數和字母因數兩部分組成的.以
四個單項式a2h,2πr,abc,-m為例,讓學生說出它們的數字因數是什么,從而引入單項式系數的概念并板書,接著讓學生說出以上幾個單項式的字母因數是什么,各字母指數分別是多少,從而引入單項式次數的概念.
單項式的系數:單項式中的數字因數叫做這個單項式的系數.
單項式的&39;次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數.
4.例題:
例1:判斷下列各代數式是否是單項式.如不是,請說明理由;如是,請指出它的系數和次數.①x+1;②;③πr2;④-a2b
答:①不是,因為原代數式中出現了加法運算;
②不是,因為原代數式是1與x的商;
③是,它的系數是π,次數是2;
④是,它的系數是-,次數是3.
例2:下面各題的判斷是否正確?
①-7xy2的系數是7;②-x2y3與x3沒有系數;③-ab3c2的次數是0+3+2;
④-a3的系數是-1;⑤-32x2y3的次數是7;⑥πr2h的系數是.
答:①錯,應是?7;②錯;?x2y3系數為?1,x3系數為1;③錯,次數應該是1+3+2;④正確;⑤錯,次數為2+3=5;⑥正確
強調應注意以下幾點:
①圓周率π是常數;
②當一個單項式的系數是1或-1時,“1”通常省略不寫,如x2,-a2b等;
③單項式次數只與字母指數有關.
5.游戲:
規則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數和次數;然后交換,看兩小組哪一組回答得快而準.
(學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養同學之間的競爭意識.)
三、課堂小結:
①單項式及單項式的系數、次數.
②根據教學過程反饋的信息對出現的問題有針對性地進行小結.
③通過判斷一個單項式的系數、次數,培養學生理解運用新知識的能力,已達到本節課的教學目的.
教學后記:
本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習.為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊.
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎.
初一數學的教案篇3
教學目的:
(一)知識點目標:
1.了解正數和負數是怎樣產生的。
2.知道什么是正數和負數。
3.理解數0表示的量的意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:知道什么是正數和負數,理解數0表示的量的意義。
教學難點:理解負數,數0表示的量的意義。
教學方法:師生互動與教師講解相結合。
教具準備:地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快?
內容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
講授新課:
1.自然數的產生、分數的產生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、0.5、 等是正數(也可加上“十”)
-3、-2、-0.5、- 等是負數。
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地某銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
課后反思
初一數學的教案篇4
本節課的主要任務是引導學生完成由立體圖形到視圖,再由視圖想到立體圖形的復雜過程。這對于剛剛接觸幾何的初一學生而言,無疑是一次較大的挑戰,順利地完成教學,對今后學習興趣、信心的培養都是至關重要的,因此,我針對學生的心理特點及接受能力對教材做如下設計:
首先我用蘇軾的《題西林壁》巧妙地喚起學生的生活感受,讓他們認識到視圖的知識在生活中我們早有親身體驗,只是還沒有形成概念,然后我再用“粉筆”這一簡單的教具,讓學生再次體會,加深認識,這樣,教學與生活緊密相連,既有自然地導入課題,又消除學生對新知識的恐懼,同時還激發了學生濃厚的學習興趣。
然后,我不適時地出示“三視圖”這一概念,通過實驗,讓學生認識到視圖就是由立體圖形轉化成的平面圖形,并不斷地訓練、討論、總結,得出畫三視圖的正確方法。這時教師要巧妙點撥,學生如何從正面、上面、側面三個角度來觀察,既體現了學生的主體地位,又突出了教師的主導作用,鍛煉了學生的動手操能力。
由視圖到立體圖形與上面的過程恰恰相反,需要學生根據視圖進行想象,在大腦中構建一個立體形象。我引導學生利用直觀形象與生活中的實物進行聯系,通過歸納、總結、對比的方法,有效的突破這一難點。為了進一步地激發學生的學習興趣,培養學生的想象能力和思維能力,可以讓學生用一些小立方體隨意擺出幾種組合并描繪出它的視圖,再由視圖到立體圖形的課堂訓練。最后,讓學生歸納所學知識,進一步鍛煉學生的概括能力,使知識系統化。以上設計如有不妥之處,望老師們不吝賜教,我不勝感激。
評課記錄
開發區李玉:于坤老師這節課有幾個突出特點:
1、給學生創設了生動的問題情境。
本節課用宋朝文學家蘇軾的一首的詩《題西林壁》。“橫看成嶺側成峰,遠近高低各不同……”來引入課題,從橫、側、遠、近、高、低等不同角度來觀察廬山,引出如何觀察生活中的立體圖形,這個切入點非常好,一下子就能抓住學生的心,吸引學生的注意力。在平日的教學中,我們也應該多找這樣的例子。如在教七年級《代數式》時,有的老師這樣引入“童年是美好而幸福的,大家還記得那首“唱不完的兒歌吧”,然后同學們一起念“一只青蛙一張嘴,兩只眼睛四條腿,撲騰一聲跳下水;兩只青蛙兩張嘴,四只眼睛八條腿,撲騰兩聲跳下水;三只青蛙三張嘴,六只眼睛12條腿,撲騰三聲跳下水……”,然后問:你能不能用一句話來唱完這首兒歌?引發學生思考的興趣,有的學生通過思考得出:n只青蛙n張嘴,2n只眼睛4n條腿,撲騰n聲跳下水,將字母表示數的優點一下子表現出來,令學生頓覺耳目一新。
2、注重過程教學和學法指導
在教學畫圓柱體、長方體、球體和圓錐體的三視圖時,老師不是直接給學生講解它們的三視圖是什么,然后讓學生記憶、變式練習,而是引導學生通過看書、觀察老師手中的教具、學生自己的學具或學生自制的模型,再找學生回答、小組討論,然后教師和學生一起確定答案。這種教學模式:提出問題,創設問題情境———觀察實物或學生看書、計算、畫圖、獨立思考、猜想———小組討論交流———讓一個小組代表發言,其它小組補充說明———師生交流總結———拓展應用的模式,比較符合學生的認知規律,能讓學生經歷探索知識的發生發展過程及在合作學習中學會與他人交流,不僅學會了知識,而且能鍛煉學生的各種能力。
3、體現學生主體地位,注重學法指導
教師在本節課上處處關注學生學習的主觀能動性,學生自始至終處于被肯定、被激勵之中,時時感受到自己是學習的主人,教師給學生留有較大的學習的空間:如觀察、討論、動手擺放學具等,提出問題后讓學生充分思考并給予適時的點撥。教科院李洪光老師:
1、周六研究課的定位:本學期的周六研究課不再是一節公開課,而是為解決我們在平日教學中存在的問題而開設的研究、研討課。
2、在平日的教學中,不少學校和老師存在這樣的現象:課堂上老師講的多,學生學的少;學生聽明白的多,學會的少。究其原因,是我們只注重了終端的結果,而忽視了學習知識的過程。因此在今后的課堂教學中,我們應該讓學生掌握知識的發生、發展的過程,讓教師和學生充分暴露思維的過程,另外讓學生學會學習數學的方法,這也是我們的任務之一。這兩節課在這些方面都做了有益的探索。如王長山老師給學生提供了豐富的材料讓學生思考、探索,在教學過程中滲透數學思想和方法。于坤老師抓住本節課的核心問題,處處讓學生參與到學習探究活動中,教學生觀察事物的方法,尋找數學與生活的聯系等作法,就很好地體現了新課改的理念。當然并不是所有的課型都讓學生探究、討論,如果講解能引發學生思維的就用講解法,討論交流能引發思維的就用討論法,總之,在教學中要充分調動學生思維的積極主動性。另外一定要突出數學自身的特點,在我們的老師的課上,多數老師在一節課的結尾都讓學生談談本節課學會了哪些知識、方法,有什么體會,對本節的內容進行概括性總結,這樣做就讓學生對本節課有了整體認識。另外不少老師強調嚴密的邏輯思維、嚴格的解題步驟等作法都值得發揚。
初一數學的教案篇5
●教學內容
七年級上冊課本11----12頁1.2.4絕對值
●教學目標
1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。
2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。
●教學準備
多媒體課件
●教學過程
一、創設問題情境
1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作-__________,B處記作__________。
以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩點又有什么特征?(從形和數兩個角度去感受絕對值)。
3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念-———絕對值。
二、建立數學模型
1、絕對值的概念
(借助于數軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點的關系 ②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用 +5表示的話,那么下降了5度,就用-5 表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數的絕對值
-1.6 , , 0, -10, +10
2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)
特點:1、一個正數的絕對值是它本身
2、一個負數的絕對值是它的相反數
3、零的絕對值是零
4、互為相反數的兩個數的絕對值相等
3.出示題目
(1) -3的符號是_______,絕對值是______;
(2) +3的符號是_______,絕對值是______;
(3) -6.5的符號是_______,絕對值是______;
(4) +6.5的符號是_______,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成。現在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎?
5、練習3:回答下列問題
①一個數的絕對值是它本身,這個數是什么數?
②一個數的絕對值是它的相反數,這個數是什么數?
③一個數的絕對值一定是正數嗎?
④一個數的絕對值不可能是負數,對嗎?
⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數
(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)
分析:
①從數字上分析
∵|+4|=4, |-4|=4 ∴絕對值等于4的數是+4和-4畫一個數軸(如下圖)
②從幾何意義上分析,畫一個數軸(如下圖)
因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數是+4和-4.
6、練習:做書上12頁課內練習1、2兩題。
四、歸納小結
1、本節課我們學習了什么知識?
2、你覺得本節課有什么收獲?
3、由學生自行總結在自主探究,合作學習中的體會。
五、課后作業
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業題。
初一數學的教案篇6
學習目標:
1、會進行包括小數或分數的有理數的加減混合運算。
2、熟練地進行有理數加減混合運算,并利用運算律簡化運算。
3、會比較“加減法統一為加法”與“省略加號的代數和”兩種計算形式。
學習重難點:
1、準確迅速地進行有理數的加減混合運算,加減運算法則和加法運算律。
2、減法直接轉化為加法及混合運算的準確性,省略加號與括號的代數和計算。
學習過程:
任務一:溫故知新
1、完成課本44頁習題2、7的第1、2題,寫在作業本上。
2、6有理數的加減混合運算》課時練習
一、選擇題(共10題)
1、下列關于有理數的加法說法錯誤的是()
A、同號兩數相加,取相同的符號,并把絕對值相加
B、異號兩數相加,絕對值相等時和為0
C、互為相反數的兩數相加得0
D、絕對值不等時,取絕對值較小的數的符號作為和的符號
答案:D
解析:解答:D選項應該是有理數相加時,如果絕對值不等時,取絕對值較小的數的&39;符號作為和的符號
分析:考查有理數的的加法法則
《2、6有理數的加減混合運算》同步練習
2、有一架直升飛機從海拔1000米的高原上起飛,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此時這架飛機離海平面多少米?
3、10名學生體檢測體重,以50千克為基準,超過的數記為正,不足的數記為負,稱得結果如下(單位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
這10名學生的總體重為多少?10名學生的平均體重為多少?
初一數學的教案篇7
教學目標
1.會進行含有括號的整式加減運算。
2.會先進行整式的加減,再求值。
復習舊知識,引入新知識
復習“去括號法則”,請同學們先完成題目1:
教師根據情況分析錯誤原因,并提醒學生注意括號前面的“—”號。分析:在去括號的運算中,當()前是“-”號時,容易犯的錯誤是只將第一項變號,而其他項不變。
通過練習題1的分析后,再讓學生繼續完成練習題2,進行知識強化。(讓4個學生出黑板板示,允許其他同學出來修改)
師:前面我們學習了合并同類項、去括號,本節課我們學習整式的加減。進行整式的加減運算,實際上就是做兩件事,第一件事是去括號,第二件事是合并同類項。請看例6.
(按去括號、合并同類項兩步先讓生嘗試)
師:通過上面的學習,你能說出整式加減的基本運算步驟嗎?
每一步應注意什么?
讓學生觀察例題的過程,找出解題的路徑。
試探練習,回授調節
師:請學生4人出黑板板示,其他同學在自己座位上迅速完成,作好改錯準備。
生:在自己座位上獨立完成?
板示學生返回座位后,發現有錯誤的學生可出黑板改正。
師:提問學生,要求說出錯誤在什么地方,并加以改正。
學生練習,老師巡查并指導。
學生多數會漏寫括號。
師:在這幾個整式相加或相減時,為什么要加上括號
生:思考回答?
師:觀察本例,并說出本例與之前練習有什么區別?
生:此例最后給出x、y的值,要求多項式的值。
師:請用兩種方法做一做,并比較哪一種方法簡單些?
學生通過比較,都會認為先化簡,后求值較為簡單些。
教師再板書規范的書寫過程。
通過本題的解答,讓學生進一步熟練整式加減法的一般解題步驟,讓學生先化簡再求值,并培養學生規范的解題格式。
學生練習,教師巡查指導,及時提醒出現差錯的學生改正。注意不同層次學生的積極性的調動,使每個學生都參與到訓練中來,積極動腦、動手,同時教師對差生進行指導和鼓勵。
初一數學的教案篇8
尊敬的各位領導、老師:
大家好!
今天我說課的課題是有理數的加法。本節課選自湖南教育出版社出版的數學七年級(上)第一章第四節第一課時的內容。下面我就從教材分析、教法學法、教學程序和教學反思四個方面向大家介紹我對本節課的理解與設計。
教材分析
(一)地位和作用
有理數的加法是小學算術加法運算的拓展,是初中數學的起始部分,也是初中數學運算最重要,最基礎的內容。熟練掌握有理數的加法運算是學習有理數其它運算的前提,同時,也為后面學習實數、代數式運算、方程、不等式、函數等知識奠定基礎、有理數的加法運算是建構在生產、生活實例上,有較強的生活價值,體現了數學來源于實踐,又反作用于實踐。
就本章而言,有理數的加法是本章的重點。學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵在于這一節的學習。
(二)教學目標
1、知識與能力目標:
(1)了解有理數加法的意義。
(2)理解并掌握的有理數加法的法則,并會運用法則進行準確運算,提高學生的運算能力。
2、過程與方法目標:
(1)經歷法則探索的過程,培養學生歸納總結知識的能力。
(2)體驗初步的算法思想。(轉化)
(3)在探索過程中感受數形結合和分類討論的數學思想。
(4)滲透由特殊到一般的唯物辯證法思想。
3、情感與態度目標:
(1)讓學生體會到數學知識來源于生活,服務于生活,培養學生對數學的熱愛。
(2)培養學生協作意識,體驗成功,樹立學習自信心。
(三)教學重點、難點:
重點:理解和運用有理數的加法法則。
難點:異號兩數相加的法則。
教法與學法
我在本節課主要采用“引導——發現教學法”,并借助多媒體課件來展開教學。學生主要采用“合作探究學習法”來學習本節內容。
教學程序:
我采用的教學模式分為“引——探——結——用”四個環節。
(一)、引出課題(2分鐘)
例如,足球比賽中,可以把進球數記為正數,失球數記為負數,它們的和叫做凈勝球數。
如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球。則紅隊的凈勝球數為4+(-2),
藍隊的凈勝球數為1+(-1)。
這里用到正數和負數的加法。
那么,怎樣計算4+(-2)呢?
此環節大約2分鐘。
(二)、探索規律、得出法則。(15分鐘)
現規定正能量為正,負能量為負。
(1)若兩個好人攜帶正能量分別為+20、+30,
則相加的結果是()。
寫成算式:(+20)+(+30)=()
(2)若兩個壞人攜帶負能量分別為—20、—30,
則相加的結果是()。
寫成算式:(—20)+(—30)=()
這兩個算式,運算有什么特點呢?
同號兩數相加,好比作同伙人:正數+正數,正能量增大;
負數+負數,負能量增大。
最后概括為①定符號;②把絕對值相加。
(3)若一個好人攜帶正能量+30一個壞人攜帶負能量—10。
則兩人較量的結果是()贏,還剩()能量。
寫成算式:(+30)+(—10)=()。
(4)若一個好人攜帶正能量+20一個壞人攜帶負能量—40。
則兩人較量的結果是()贏,還剩()能量。
寫成算式:(+20)+(—40)=()。
這組算式,運算有什么特點呢?
異號兩數相加,好比兩人在打仗,誰的力量強大,誰就贏。如果正能量大,符號就定為正;如果負能量大,符號就定為負,又讓學生理解兩人打仗,彼此力量會彼此抵消,彼此消損。那么贏的一方還剩多少能量呢?故而把絕對值做減法。強調用大的絕對值減去小的絕對值。
最后概括為①定符號;②把絕對值相減。
再看兩種特殊情形:
(5)若一個好人攜帶正能量+30,一個壞人攜帶負能量—30。則兩人較量的結果是(),還剩()能量。
寫成算式:(—30)+(+30)=()。
(6)20+0=()0+(—15)=()
新課程倡導讓學生從“要我學”向“我會學”轉變,而教師是學生學習的組織者、引導者和合作者。由于教材上利用數軸和絕對值來探究法則過于抽象,不易引起學生的興趣。借鑒之下,我選用了學生感興趣的卡通動畫人物,激發學生的學習興趣,營造一種輕松愉快的學習氛圍;我讓學生來當裁判,學生必須把6次的情況都完成后,才能得到結果,這樣每個學生的注意力一直會很集中。若學生有困難,則小組內探討交流、補充,讓學生能逐步引導概括出有理數的加法法則。上述過程,大約20分鐘的時間,將突出重點,突破難點。
(三)小結(3分鐘)
有理數的加法法則
1、同號兩數相加:
取加數的符號,并把絕對值相加。
2、異號兩數相加:
取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數的兩個數相加得0。
4、一個數同零相加:仍得這個數
(四)、用
1、加深理解,鞏固法則。(5分鐘)
(1)填表
(2)思考:在進行有理數加法運算時,應分幾步完成?
此題的設計是為了學生更好地理解、掌握有理數加法法則。同時,讓學生知道,凡是有理數運算都要首先確定結果的符號。學生獨立完成表格后,我將解題步驟,分步板書在黑板上,讓學生對解題格式引起重視。
2、變式訓練,應用法則。(15分鐘)
數學家皮亞杰認為:“不斷的訓練才能夠逐漸的發展出一個合理的數學模型”。練習和科學的重復練習始終是數學學習的有效辦法。為了讓學生熟練應用法則準確計算,我設計了2個例題、例1是同號兩數相加;例2是異號兩數相加。這兩種最典型的類型,以起到鞏固法則和規范格式的&39;作用。我讓學生嘗試獨立完成,讓基礎組的學生板演后,并讓別的學生找錯誤,這樣充分調動了學生的積極性,活躍了課堂氣氛。同時,通過學生糾錯的過程,讓學生對錯誤加深記憶,將知識轉化為技能。
3、小組闖關,檢測目標。(5分鐘)
在新課程下,教學的本質是學習活動,學生是否有效的學習,教學目標是否落實到位,檢測目標成為一節課的一個重要環節。
我設計了兩個闖關小游戲。一個是學生口答搶答,另一個是男生出題女生搶答,反之女生出題男生搶答,通過男女同學競爭中鞏固、應用法則。
初一數學的教案篇9
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:探索和掌握平行公理及其推論.
學習難點:對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數學的教案篇10
學習目標
1.知道數軸上有原點、正方向和單位長度,能將已知數在數軸上表示出來,能說出數軸上的已知點所表示的數,知道有理數都可以用數軸上的點表示;
2.了解數形結合的數學思想。
3.進一步理解有理數與數軸上的點的對應關系;鞏固在數軸上由數找點、由點讀數的方法;
4.會借用數軸直觀的進行有理數的大小比較,體會數形結合的數學思想。
重點是掌握數軸的概念和畫法,明確其三要素缺一不可;利用數軸比較有理數的大小,并歸納出一般規律。
難點數軸上的點與有理數的對應關系的理解是難點。教學中要求學生多動手,增強對“形”的感性認識,培養動手、動腦和實際操作能力。
教學過程
一、自主學習(一)、自學課文P(二)、導學練習
1.有理數包括哪些數?0是正數還是負數?
2.溫度計的用途是什么?類似于這種用帶有刻度的物體表示數的東西還有哪些(直尺、彈簧秤等)?
3.思考:
①零上25℃用正數_____表示。0℃用數____表示;零下10℃用負數_____表示。
②什么叫數軸?數軸要具備哪三個要素?
③原點表示什么數?原點右方表示什么數?原點左方表示什么數?
④表示+2的點在什么位置?表示-3的點在什么位置?
⑤原點向右0.5個單位長度的A點表示什么數?原點向左1個單位長度的B點表示什么數
4.數軸的畫法,有哪幾個步驟?
5.我們還可以更簡便的得出數軸的定義:規定了、和的直線叫做數軸。
、和是數軸的三要素,原點位置的選定、正方向的取向、單位長度大小的確定,都是根據需要認為規定的。直線也不一定是水平的。
6.溫度計里的大小:觀察溫度計的刻度,發現上邊的溫度總比下邊的高。類似地,在數軸上表示的兩個數,的數總比的數大。
進一步觀察數軸,發現所有的負數都在“0”的,所有的正數都在“0”的,這說明什么?
正數都0;負數都0;正數一切負數。
(三)自學疑難摘要:
組長檢查等級:
二合作探究
1:判斷下圖中所畫的數軸是否正確?如不正確,指出錯在哪里?
2.把下面各小題的數分別表示在三條數軸上:
(1)2,-1,0,+3.5
(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
想想看,第(3)小題數據比較大,那怎樣表示呢?
3.把下列各組數用“<”號連接起來.
(1)–10,2,–14;
(2)–100,0,0.01;
(3),–4.75,3.75。
三、展示提升
1、每個同學自主完成二中的練習后先在小組內交流討論。
2、每個組根據分配的任務把自己組的結論板書到黑板上準備展示。
3、每個組在展示的過程中其他組的同學認真聽作好補充和提問。
四、反饋與檢測
1.判斷下圖中所畫的數軸是否正確?
(1)
2.下面數軸上的點A、B、C、D、E分別表示什么數?
(2)
3.將-3、1.5、、-6、2.25、、-5、1各數用數軸上的點表示出來。
4.畫一條數軸,并在上面標出下列的點。
±100±200±300
初一數學的教案篇11
教學目的
1.了解一元一次方程的概念。
2.掌握含有括號的一元一次方程的解法。
重點、難點
1.重點:解含有括號的一元一次方程的解法。
2.難點:括號前面是負號時,去括號時忘記變號。
教學過程
一、復習提問
1.解下列方程:
(1)5x-2=8(2)5+2x=4x
2.去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念
如44x+64=3283+x=(45+x)y-5=2y+l問:它們有什么共同特征?
只含有一個未知數,并且含有未知數的式子都是整式,未知數的次數是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x=3x-2x-=-l
5x2-3x+1=02x+y=l-3y=5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強調去括號時把括號外的因數分別乘以括號內的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內的每一項的符號。
補充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習
教科書第9頁,練習,l、2、3。
四、小結
學習了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業
1.教科書第12頁習題6.2,2第l題。
初一數學的教案篇12
教學目標
知識目標:
經歷解方程的基本思路是把“復雜”轉化為“簡單”,把“未知”轉化為“已知”的過程,進一步理解并掌握如何去分母的解題方法。
能力目標:
通過解方程的方法、步驟的靈活多樣,培養學生分析問題、解決問題的能力。
1.了解方程的`解,解方程的概念;
2.掌握運用等式的基本性質解簡單的一元一次方程;
3.經歷體會解方程中的轉化思想.
解一元一次方程:同步練習
1.(20__?大連)方程2x+3=7的解是()
A.x=5B.x=4C.x=3.5D.x=2
【分析】方程移項合并,把x系數化為1,即可求出解.
【解答】解:2x+3=7,移項合并得:2x=4,解得:x=2,
故選D
【點評】此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.
《4.2解一元一次方程》測試
1.解方程x-2=0,可以按下面的步驟進行:
解:當x≥0時,得x-2=0.
解這個方程,得x=2;
當x<0時,得-x-2=0.
解這個方程,得x=-2.
所以原方程的解是x=2或x=-2.
仿照上述的解題過程,解方程x-2-1=0.
初一數學的教案篇13
七年級上2.5有理數的減法(一)教案
教學目標:
1、經歷探索有理數減法法則的過程。
2、理解并初步掌握有理數減法法則,會做有理數減法運算。
3、能根據具體問題,培養抽象概括能力和口頭表達能力。
教學重點運用有理數減法法則做有理數減法運算。
教學難點有理數減法法則的得出。
教具學具多媒體、教材、計算器
教學方法研討法、講練結合
教學過程一、引入新課:
師:下面列出的是連續四周的最高和最低氣溫:
第1周第二周第三周第四周
最高氣溫+6℃0℃+4℃-2℃
最低氣溫+2℃-5℃-2℃-5℃
周溫差
求每周的溫差時,應運用哪一種運算?你認為計算結果應是什么?請列出算式,并寫出計算結果。
生:溫差分別是4℃、5℃、6℃、3℃,應使用減法運算。
列式為;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教學過程二、有理數減法法則的推倒:
師:1、根據上面的計算和計算結果,讓我們以求四周的溫差為例子研究一下,是否可以用加法的知識類做減法的運算。
2、是否能直接把減法轉化為加法來求差?猜想一下,完成這個轉化的法則是什么?
3、自己設計一些有理數的減法,用計算器檢驗一下你歸納的減法法則是否正確。
舉例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理數減法法則:減去一個數,等于加上這個數的相反數。
教學過程三、法則的應用:
例1:先做筆算,再用計數器檢驗。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教學過程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
=676
注意:強調計算過程不能跳步,體現有理數減法法則的運用。
檢測題
教學過程四、練習反饋:
師:巡視個別指導,訂正答案。
教學過程五、小結:
有理數減法法則:
減去一個數,等于加上這個數的相反數。
有理數減法法則:
減去一個數,等于加上
這個數的相反數。例1:先做筆算,再用計數器檢驗。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
初一數學的教案篇14
一、說教材分析
1.教材的地位和作用
二元一次方程組是初中數學的重點內容之一,是一元一次方程知識的延續和提高,又是學習其他數學知識的基礎。本節課是在學生學習了一元一次方程的基礎上,繼續學習另一種方程及方程組,它是學生系統學習二元一次方程組知識的前提和基礎。通過類比,讓學生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數等知識的學習打下基礎。
2.教學目標
知識目標:通過實例了解二元一次方程和它的解,二元一次方程組和它的解。
能力目標:會判斷一組未知數的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。
情感目標:使學生通過交流、合作、討論獲取成功體驗,激發學生學習知識的興趣,增強學生的自信心。
3.重點、難點
重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。
難點:在實際生活中二元一次方程組的應用。
二、教法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,在引導分析時,給學生留出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的&39;自我建構。
另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好發激發學生的學習興趣,增大教學容量,提高教學效率。
三、學法
“問題”是數學教學的心臟,活動是數學教學中的靈魂。所以我在學生思維最近發展區內設置并提出一系列問題,通過數學活動,引導學生:自主性學習,合作式學習,探究式學習等,激發學生的學習興趣,提高學生的數學思維和參與度,力求學生在“雙基”數學能力和理性精神方面得到一定發展。
四、教學過程
新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:
(1)復習舊知,溫故知新
籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部10場比賽中得到16分,那么這個隊勝負場數分別是多少?
設計意圖:構建注意主張教學應從學生已有的知識體系出發,方程是本節課深入研究二元一次方程組的認知基礎,這樣設計有利于引導學生順利地進入學習情境。
(2)創設情境,提出問題
這個問題中包含了哪些必須同時滿足的條件?設勝的場數是,負的場數是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時滿足的條件:
勝的場數+負的場數=總場數,
勝場積分+負場積分=總積分。
這兩個條件可以用方程
+y=10
2+y=16
表示:
上面兩個方程中,每個方程都含有兩個未知數(和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程.
把兩個方程合在一起,寫成
+y=10
2+y=16
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望,通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節。
(3)發現問題,探求新知
滿足方程①,且符合問題的實際意義的、y的值有哪些?把它們填入表中。
y
y
上表中哪對、y的值還滿足方程②。
一般地,使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
設計意圖:現代數學教學論指出,數學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過學習用坐標表示平移觀察分析、獨立思考、小組交流等活動,引導學生歸納。
(4)分析思考,加深理解
通過前面的學習,學生已基本把握了本節所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入第五個環節。
(5)強化訓練,鞏固雙基
課堂練習:
設計意圖:幾道練習題由淺入深、由易到難、各有側重,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,升華知識。
練習2:已知下列三對數值:
哪一對是下列方程組的解?
(設計意圖:數學教學論指出,數學知識要明確其內涵和外延(條件、結論、應用范圍等),通過對二元一次方程組的幾個重要方面的闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。
(6)小結歸納,拓展深化
我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主體作用,從學習的指示、方法、體驗是那個方面進行歸納,我設計了這個問題:
①通過本節課的學習,你學會了哪些知識;
(7)布置作業,提高升華
教科書第89頁1、第90頁第1題。
以作業的鞏固性和發展性為出發點,我設計了兩個題,不僅是對本節課內容的一個反饋,也是對本節課知識的一個鞏固。總的設計意圖是反饋教學,鞏固提高。
以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到狀態。
五、評價與反思
本節課是在學生學習了一元一次方程基礎上進行的,主要是引導學生運用類比思想,依次經過比較、歸納等活動,最終探索出二元一次方程組。下面是關于本節課的幾點說明:
1、本節課對教材的內容進行了優化處理,為跳躍較大的知識點作充分的鋪墊,密切聯系新舊知識,讓學生借助已有的知識和方法主動探索新知識,擴大知識結構,發展能力,完善人格,從而使課堂教學真正落實到學生的發展上,體現了以教師為主導、學生為主體,以思想為導向、知識為載體,以方法為中介、訓練為主干,以培養學生的思維能力為中心、操作為動力的教學理念。
2、在課堂教學中為學生提供充分的探索空間,注重引導學生分工合作,獨立思考,形成主見并進行交流,創設民主、寬松和諧的課堂氣氛,讓學生暢所欲言,同時進行實驗操作,使課堂教學靈活直觀,新鮮有趣,從而使課堂教學實現教學思想的先進性、教學目標的整體性、教學過程的有序性、教學方法的靈活性、教學手段的多樣性、教學效果的可靠性。
3、注重量化評價與質懷評價相結合,充分利用課堂觀察評價、問題討論評價、學生自我評價等多元化評價,通過幾組習題,將學生水平層次記錄在案,為學生的學習評價提供充分的科學依據,從而綜合檢驗學生對數學知識、技能的理解,以及學生在學習數學的過程在情感和態度的形成和發展。
初一數學的教案篇15
一、教學目標
1、知識與技能
(1)理解圓與圓的位置的種類;
(2)利用平面直角坐標系中兩點間的距離公式求兩圓的連心線長;
(3)會用連心線長判斷兩圓的位置關系.
2、過程與方法
設兩圓的連心線長為,則判別圓與圓的位置關系的依據有以下幾點:
(1)當時,圓與圓相離;
(2)當時,圓與圓外切;
(3)當時,圓與圓相交;
(4)當時,圓與圓內切;
(5)當時,圓與圓內含;
3、情態與價值觀
讓學生通過觀察圖形,理解并掌握圓與圓的位置關系,培養學生數形結合的思想.
二、教學重點、難點:
重點與難點:用坐標法判斷圓與圓的位置關系.
問題設計意圖師生活動
1.初中學過的平面幾何中,圓與圓的位置關系有幾類?結合學生已有知識以驗,啟發學生思考,激發學生學習興趣.教師引導學生回憶、舉例,并對學生活動進行評價;學生回顧知識點時,可互相交流.
2.判斷兩圓的位置關系,你有什么好的方法嗎?
引導學生明確兩圓的位置關系,并發現判斷和解決兩圓的位置教師引導學生閱讀教科書中的相關內容,注意個別輔導,解答學生疑難,并引導學生自己總結解題的方法.
