電子版高中數(shù)學教案
教案是指每節(jié)課教師所寫的每節(jié)課的教學重點、難點、教學內容、教學方法和教學目標。小編給大家分享電子版高中數(shù)學教案參考,方便大家參考電子版高中數(shù)學教案怎么寫。
電子版高中數(shù)學教案篇1
授課時間:08年9月12日
授課年級、科目、課題:高一數(shù)學集合的概念
使用教材:必修1(人教版)
說課教師:劉華
各位老師同學們,大家好!今天我說課的課題是“集合的概念”,本節(jié)內容選自高中數(shù)學必修1(人教版),下面我將主要從六個方面介紹我的教學方案。
一、教材分析:
教材的地位和作用:
集合是學習高中數(shù)學的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內容的教學重點和難點。
(一)教學重點:集合的基本概念和表示方法,集合元素的特征
(二)教學難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合
二、教學目標:
(一)知識目標:
(1)使學生初步理解集合的概念,知道常用數(shù)集的概念及其記法;
(2)使學生初步了解“屬于”關系的意義;
(3)使學生初步了解有限集、無限集、空集的意義
(二)能力目標:
(1)重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng);
(2)啟發(fā)學生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學會分析問題和創(chuàng)造地解決問題;
(3)通過教師指導,發(fā)現(xiàn)知識結論,培養(yǎng)學生抽象概括能力和邏輯思維能力;
(三)德育目標:激發(fā)學生學習數(shù)學的興趣和積極性,陶冶學生的情
操,培養(yǎng)學生堅忍不拔的意志,實事求是的科學學習態(tài)度和勇于創(chuàng)新的精神。
三、學情分析:
針對現(xiàn)在的學生知識遷移能力差、計算能力差的特點,第一節(jié)課的內容不要求學生太多的計算,通過大量的舉例讓學生充分掌握集合的基礎知識。
四、教法分析:
為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學生參與學習,將學生置于主體位置,發(fā)揮學生的主觀能動性,將知識的形成過程轉化為學生親自探索類比的過程,使學生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:
(1)通過實例,讓學生去發(fā)現(xiàn)規(guī)律。讓學生在問題情景中,經歷知識的形成和發(fā)展,力求使學生學會用類比的思想去看待問題。
(2)營造民主的教學氛圍,使學生參與教學全過程。
(3)力求反饋的全面性、及時性,通過精心設計的提問,讓學生的思維動起來,針對學生回答的問題,老師進行適當?shù)狞c評。
(4)給學生思考的時間和空間,不急于把結果拋給學生,讓學生自己去觀察,分析,類比得出結果,提高學生的推理能力。
五、教學過程
(一)復習導入
(1)簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質數(shù)與和數(shù);
(2)教材中的章頭引言;
(3)教材中例子(P4)。
(二)講解新課
(1)集合的有關概念
(2)常用集合及表示方法
(3)元素對于集合的隸屬關系
(4)集合中元素的特性
(三)課堂練習
1下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù)的集合(不確定)
(2)好心的人的集合(不確定)
(3){1,2,2,3,4,5}(有重復)
(4)所有直角三角形的集合(是的)
(5)高一(12)班全體同學的集合(是的)
(6)參加20--年奧運會的中國代表團成員的集合(是的)
2、教材P5練習1、2
六:總結
1.本節(jié)主要學習了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關系;以及集合元素具有的特征.
2.我們在進一步復習鞏固集合有關概念的基礎上,又學習了集合的表示方法和有限集、無限集、空集的概念,同學們要熟練掌握.
電子版高中數(shù)學教案篇2
一.教學目標:
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集
(3)能使用venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用
2.過程與方法
學生通過觀察和類比,借助venn圖理解集合的基本運算
3.情感.態(tài)度與價值觀
(1)進一步樹立數(shù)形結合的思想
(2)進一步體會類比的作用
(3)感受集合作為一種語言,在表示數(shù)學內容時的簡潔和準確
二.教學重點.難點
重點:交集與并集,全集與補集的概念
難點:理解交集與并集的概念,符號之間的區(qū)別與聯(lián)系
三.學法與教學用具
1.學法:學生借助venn圖,通過觀察、類比、思考、交流和討論等,理解集合的基本運算
2.教學用具:投影儀
四.教學思路
(一)創(chuàng)設情景,揭示課題
問題1:我們知道,實數(shù)有加法運算。類比實數(shù)的加法運算,集合是否也可以“相加”呢?
請同學們考察下列各個集合,你能說出集合c與集合a、b之間的關系嗎?
引導學生通過觀察,類比、思考和交流,得出結論。教師強調集合也有運算,這就是我們本節(jié)課所要學習的內容。
(二)研探新知
l.并集
—般地,由所有屬于集合a或屬于集合b的元素所組成的集合,稱為集合a與b的并集
記作:a∪b
讀作:a并b
其含義用符號表示為:
用venn圖表示如下:
請同學們用并集運算符號表示問題1中a,b,c三者之間的關系
練習、檢查和反饋
(1)設a={4,5,6,8),b={3,5,7,8),求a∪b
(2)設集合
讓學生獨立完成后,教師通過檢查,進行反饋,并強調:
(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現(xiàn)一次
(2)對于表示不等式解集的集合的運算,可借助數(shù)軸解題
2.交集
(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?
請同學們考察下面的問題,集合a、b與集合c之間有什么關系?
②b={是新華中學20--年9月入學的高一年級同學},c={是新華中學20--年9月入學的高一年級女同學}
教師組織學生思考、討論和交流,得出結論,從而得出交集的定義;
一般地,由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集
記作:a∩b
讀作:a交b
其含義用符號表示為:
接著教師要求學生用venn圖表示交集運算
(2)練習、檢查和反饋
①設平面內直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關系
②學校里開運動會,設a={是參加一百米跑的同學},b={是參加二百米跑的同學},c={是參加四百米跑的同學},學校規(guī)定,在上述比賽中,每個同學最多只能參加兩項比賽,請你用集合的運算說明這項規(guī)定,并解釋集合運算a∩b與a∩c的含義
學生獨立練習,教師檢查,作個別指導,并對學生中存在的問題進行反饋和糾正
(三)學生自主學習,閱讀理解
1.教師引導學生閱讀教材第10~11頁中有關補集的內容,并思考回答下例問題:
(1)什么叫全集?
(2)補集的含義是什么?用符號如何表示它的含義?用venn圖又表示?
(3)已知集合
(4)設s={是至少有一組對邊平行的四邊形},a={是平行四邊形},b={是菱形},c={是矩形},求。
在學生閱讀、思考的過程中,教師作個別指導,待學生經過閱讀和思考完后,請學生回答上述問題,并及時給予評價
(四)歸納整理,整體認識
1.通過對集合的學習,同學對集合這種語言有什么感受?
2.并集、交集和補集這三種集合運算有什么區(qū)別?
(五)作業(yè)
1.課外思考:對于集合的基本運算,你能得出哪些運算規(guī)律?
2.請你舉出現(xiàn)實生活中的一個實例,并說明其并集,交集和補集的現(xiàn)實含義
3.書面作業(yè):教材第12頁習題1.1a組第7題和b組第4題
電子版高中數(shù)學教案篇3
高中數(shù)學的內容多,抽象性、理論性強,高中很注重自學能力的培養(yǎng),誰的自學能力強,那么在一定程度上影響著你的成績以及將來你發(fā)展的前途。同時還要注意以下幾點:
第一、對數(shù)學學科特點有清楚的認識
數(shù)學的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復數(shù),都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數(shù)學顯得合情合理,渾然天成。數(shù)學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學規(guī)則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當然”的`話,那就學不下去了。
第二、要改變一個觀念。
有人會說自己的基礎不好。那什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎,
所以只要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎好不好。
第三、學數(shù)學要摸索自己的學習方法
學習重在方法,好的學習方法讓學生事半功倍。學習、掌握并能靈活應用數(shù)學的途徑有很多,做習題、用數(shù)學知識解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。同時,要注意前后知識的銜接,類比地學、聯(lián)系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
相關文章推薦:
1.高中開學第一周教學反思
2.開學第一課教學反思精選
3.20--初中開學第一課教學反思【精選】
4.高三開學教學反思
5.高一信息技術教學反思
6.開學第一課語文教學反思
7.幼兒園開學第一課反思
8.高中英語教學反思精選
9.高中生物教育反思
10.20--開學第一課教學反思
電子版高中數(shù)學教案篇4
教學目標
1.掌握對數(shù)函數(shù)的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象.
(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質去研究認識對數(shù)函數(shù)的性質,初步學會用對數(shù)函數(shù)的性質解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉化的觀點,通過對數(shù)函數(shù)圖象和性質的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數(shù)學的積極性.
教學建議
教材分析
(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎.
(2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質.難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質.由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點.
(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點.
教法建議
(1) 對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2) 在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
電子版高中數(shù)學教案篇5
直線的方程
教學目標
(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉化的教學,培養(yǎng)學生靈活的思維品質和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學建議
1.教材分析
(1)知識結構
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.
(2)重點、難點分析
①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.
②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續(xù)學習“曲線方程”打下基礎.
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點
(3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.
(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養(yǎng)學生的綜合能力.
(7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯(lián)系實際和其它學科,教師要注意引導,增強學生用數(shù)學的意識和能力.
(8)本節(jié)不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.
電子版高中數(shù)學教案篇6
今天我說課的課題是《平面向量的概念》,這是江蘇省職業(yè)學校文化課教材《基礎模塊·下冊》第七章平面向量中的第一節(jié)的內容,我將嘗試運用新課改的理念、中職學生的認知特點指導本節(jié)課的教學,新課標指出,學生是教學的主體,教師的教要本著從學生的認知規(guī)律出發(fā),以學生活動為主線,在原有知識的基礎上,建構新的知識體系。下面我將以此為基礎從教材分析、學情分析、教法學法、教學過程、教學評價等五個環(huán)節(jié),向各位專家談談我對本節(jié)課教材的理解和教學設計。
一、教材分析:
1、教材的地位和作用
向量是高中階段學習的一個新的矢量,向量概念是《平面向量》的最基本內容,它的學習直接影響到我們對向量的進一步研究和學習,如向量間關系、向量的加法、減法以及數(shù)乘等運算,還有向量的坐標運算等,因此為后面的學習奠定了基礎。
結合本節(jié)課的特點及學生的實際情況我制定了如下的教學目標及教學重難點:
2、教學目標
(1)知識與技能目標
1)識記平面向量的定義,會用有向線段和字母表示向量,能辨別數(shù)量與向量;
2)識記向量模的定義,會用字母和線段表示向量的模。
3)知道零向量、單位向量的概念。
(2)過程與方法目標
學生通過對向量的學習,能體會出向量來自于客觀現(xiàn)實,提高觀察、分析、抽象和概括等方面的能力,感悟數(shù)形結合的思想。
(3)情感態(tài)度與價值觀目標
通過構建和諧的課堂教學氛圍,激發(fā)學生的學習興趣,使學生勇于提出問題,同時培養(yǎng)學生團隊合作的精神及積極向上的學習態(tài)度。
3、教學重難點
教學重點:向量的定義,向量的幾何表示和符號表示,以及零向量和單位向量
教學難點:向量的幾何表示的理解,對零向量和單位向量的理解
二、學情分析
(1)能力分析:對于我校的學生,基礎知識較薄弱,雖然他們的智力發(fā)展已到了形成運演階段,但并不具備較強的抽象思維能力、概括能力及數(shù)形結合的思想。
(2)認知分析:之前,學生有了物理中的矢量概念,這為學習向量作了最好的鋪墊。
(3)情感分析:部分學生具有積極的學習態(tài)度,強烈的探究欲望,能主動參與研究。
三、教法學法
教法:啟發(fā)教學法,引探教學法,問題驅動法,并借助多媒體來輔助教學
學法:在學法上,采用的是探究,發(fā)現(xiàn),歸納,練習。從問題出發(fā),引導學生分析問題,讓學生經歷觀察分析、概括、歸納、類比等發(fā)現(xiàn)和探索過程。
四、教學過程
課前:
為了打造高效課堂,以生為本我選擇生本式的教學方式,以穿針引線的方式設計了前置性作業(yè)。其中包括一些向量的基本概念,并提出:
1、你學過的其他學科中有沒有可以稱為向量的?
2、向量的特點是什么?有幾種描述向量的表示方法?
3、零向量的特點是什么?
【設計意圖】目的是通過課前的預習明確自己需要在本節(jié)課中解決的問題,帶著問題聽課,我會在上課前就學生的完成情況明確主要的教學側重點,真正打造高效課堂。
課上教學過程:
1、創(chuàng)設情境
數(shù)學的學習應該是與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發(fā),讓他們在生活中發(fā)現(xiàn)數(shù)學,探究數(shù)學,認識并掌握數(shù)學,由生活的實例引入,在對比于物理學中的速度、位移等學生已有的知識給出本章研究的問題平面向量
【設計意圖】形成對概念的初步認識,為進一步抽象概括做準備。
2、形成概念
結合物理學中對矢量的定義,給出向量的描述性概念。對于一個新學的量定義概念后,通常要用符號表示它。怎樣把我們所舉例子中的向量表示出來呢?
采取讓學生先嘗試向量的表示方法,自覺接受用帶有箭頭的線段(有向線段)來表示向量。明確為什么可以用有向線段表示向量,引導學生總結出向量的表示方法,強調印刷體與手寫體的區(qū)別。結合板書的有向線段給出向量的模。
單位向量、零向量的概念
【即時訓練】
為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知
3、知識應用
本階段的教學,我采用的是教材上的兩個例題,旨在鞏固學生對平面向量的觀念,提高學生的動手實踐能力,掌握求模的基本方法,提升識圖能力。
4、學以致用
為了調動學生的積極性,培養(yǎng)學生團隊合作的精神,本環(huán)節(jié)我采用小組競爭的方式開展教學,小組討論并選派代表回答,各組之間取長補短,將課堂教學推向高潮,再次加強學生對向量概念的理解。
5、課堂小結
為了了解學生本節(jié)課的學習效果,并且將所學做個很好的總結。設置問題:通過本節(jié)課的學習你有哪些收獲?(可以從各種角度入手)
【設計意圖】通過總結使學生明確本節(jié)的學習內容,強化重點,為今后的學習打下堅定的基礎
6、布置作業(yè)
出選做題的目的是注意分層教學和因材施教,為學有余力的學生提供思考的空間。
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調控下,學生通過動眼觀察,動腦思考,層層遞進,親身經歷了知識的形成和發(fā)展過程,以問題為驅動,使學生對知識的理解逐步深入。而最后的實際應用又將激發(fā)學生的學習興趣,帶領學生進入對本節(jié)課更深一步的思考和研究之中,從而達到知識在課堂以外的延伸。
以上就是我對本節(jié)課的設計和說明,請各位領導,老師批評指正
電子版高中數(shù)學教案篇7
教學目標:
①掌握對數(shù)函數(shù)的性質。
②應用對數(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復合函數(shù)的定義域、值 域及單調性。
③ 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數(shù)函數(shù)的性質的應用。
教學過程設計:
⒈復習提問:對數(shù)函數(shù)的概念及性質。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關系來比大小。
2 函數(shù)的定義域, 值 域及單調性。
