高三教案數學
教案可以幫助教師更好地預測和解決問題,從而更好地應對突發情況。什么樣的高三教案數學才算是優秀的呢?這里整理一些高三教案數學,方便大家學習。
高三教案數學篇1
函數單調性的常用結論:
1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。
2、若f(x)為增(減)函數,則-f(x)為減(增)函數。
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
函數奇偶性的常用結論:
1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。
高三教案數學篇2
概率統計
一、知識梳理
1.三種抽樣方法的聯系與區別:
類別共同點不同點相互聯系適用范圍
簡單隨機抽樣都是等概率抽樣從總體中逐個抽取總體中個體比較少
系統抽樣將總體均勻分成若干部分;按事先確定的規則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多
分層抽樣將總體分成若干層,按個體個數的比例抽取在各層抽樣時采用簡單隨機抽樣或系統抽樣總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統抽樣的步驟:①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.
(4)要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值
2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據,,…,,其平均數為則方差,標準差
3.古典概型的概率公式:如果一次試驗中可能出現的結果有個,而且所有結果都是等可能的,如果事件包含個結果,那么事件的概率P=
特別提醒:古典概型的兩個共同特點:
○1,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;
○2,即每個基本事件出現的可能性相等。
4.幾何概型的概率公式:P(A)=
特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。
二、夯實基礎
(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數分別為()
A.19、13B.13、19C.20、18D.18、20
(3)統計某校1000名學生的數學會考成績,
得到樣本頻率分布直方圖如右圖示,規定不低于60分為
及格,不低于80分為優秀,則及格人數是;
優秀率為。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:
9.48.49.49.99.69.49.7
去掉一個分和一個最低分后,所剩數據的平均值
和方差分別為()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為()
三、高考鏈接
07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒
;第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設成績小于17秒
的學生人數占全班總人數的百分比為,成績大于等于15秒
且小于17秒的學生人數為,則從頻率分布直方圖中可分析
出和分別為()
08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為()
分數54321
人數2010303010
09、在區間上隨機取一個數x,的值介于0到之間的概率為().
08、現有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求被選中的概率;(Ⅱ)求和不全被選中的概率.
高三教案數學篇3
(一)引入:
(1)情景1
王老漢的疑惑:秋收過后,村中擁入了不少生意人,收購大豆與紅薯,精明的王老漢上了心,一打聽,頓時喜上眉梢.村中大豆的收購價是5元/千克,紅薯的收購價是
2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現金,踏著可載重350千克的三輪車開始自己的發財大計,可明天應該收購多少大豆與紅薯呢?王老漢決定與家人合計.回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應收購大豆”,孫子說:“收購紅薯每元成本獲利多故應收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。
【問題情景使學生感受到數學是來自現實生活的,讓學生體會從實際問題中抽象出數學問題的過程;通過情景我們不僅能從中引出本堂課的內容“二元一次不等式(組)的概念,及其所表示的平面區域”,也為后面的內容“簡單的線性規劃問題”埋下了伏筆.】
(2)問題與探究
師:同學們,你們能用具體的數字體現出王老漢的兩個孫子的收購方案嗎?
生,討論并很快給出答案.(師,記錄數據)
師:請你們各自為王老漢設計一種收購方案.
生,獨立思考,并寫出自己的方案.(師,查看學生各人的設計方案并有針對性的請幾個同學說出自己的方案并記錄,注意:要特意選出2個不合理的方案)
師:這些同學的方案都是對的嗎?
生,討論并找出其中不合理的方案.
師:為什么這些方案就不行呢?
生,討論后并回答
師:滿足什么條件的方案才是合理的呢?
生,討論思考.(師,引導學生設出未知量,列出起約束作用的不等式組)
師,讓幾個學生上黑板列出不等式組,并對之分析指正
(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)
師:同學們還記得什么是方程的解嗎?你能說出二元一次方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?
生,討論并回答(教師記錄幾組,并引導學生表示成有序實數對形式.)
師:同學們能說出什么是不等式(組)的解嗎?你能說出二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?
生,討論并回答(教師對于學生的回答指正并有選擇性的記錄幾組比較簡單的數據,對于這些數據要事先設計好并在課件的坐標系中標出備用)
(教師對引例中給出的不等式組介紹,并指出上面的正確的設計方案都是不等式組的解.進而介紹二元一次不等式(組)解與解集的概念)
師:我們知道每一組有序實數對都對應于平面直角坐標系上的一個點,你能把上面記錄的不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系上標記出來嗎?
生,討論并在下面作圖(師巡視檢查并對個別同學的錯誤進行指正)
師,利用多媒體課件展示平面直角坐標系及不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的一些點,讓學生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系中的位置有什么特點?(由于點太少,我們的學生可能得不出結論)
師,引導學生在同一平面直角坐標系中畫出方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的圖形(一條直線,指導學生用與坐標軸的兩個交點作出直線),再提出問題:二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解為坐標的點在平面直角坐標系中的位置有什么特點?
生,提出猜想:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計分得的左下半平面.
【教師通過幾個簡單的問題,讓學生產生了利用平面區域表示二元一次不等式的想法,而后再讓學生大膽的猜想,細心的論證,讓他們從中讓體會到對新知識進行科學探索的全過程.】
師:這個結論正確嗎?你能說出理由來嗎?
生,分組討論,并利用自己的數學知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點再去檢驗,有的可能會試著用坐標軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計下方的點與對應直線上的點對照比較的方法進行說明)
師,在巡視的基礎上請運用不同方法的同學闡述自己的理由,并對于正確的作法給予表揚,然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計橫坐標相同而縱坐標不同的點對應分析的方法進行證明.
師:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的右上半平面應怎么表示?
生:表示為二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計,(很快回答)
師:從中你能得出什么結論?
生,討論并得到一般性結論(教師總結糾正)
(教師總結并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的某側所有點組成的平面區域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域因包含邊界故直線畫成實線.)
師:點O(0,0)是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計一個解嗎?據此你能說出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域相對與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的位置嗎?
生,作圖分析,討論并回答(師,對學生的回答進行分析)
師:結合上面問題請同學們歸納出作不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程.
生,討論并回答(師,對于學生的答案給以分析,并肯定其中正確的結論)
師:你們能說出作二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程嗎?
生,討論并回答(教師總結并用多媒體展示:直線定界,特殊點定域)
師:若點P(3,-1),點Q(2,4)在直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的異側,你能用數學語言表示嗎?
生,討論,思考(教師巡視,并觀察學生的解答過程,最后引導學生得出:一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解,一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解)
師:你能在這個條件下求出二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的范圍嗎?
生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計并求解.
師:若把上面問題改為點在同側呢?請同學們課后完成.
【在教師的幫助下學生通過自己的分析得出了正確的結論,讓他們從中體會到了獲取新知后的成就感,從而增加了對數學的學習興趣.同時也讓他們體會人們在認識新生事物時從特殊到一般,再從一般到特殊的認知過程.】
(二)實例展示:
例1、畫出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域.
例2、用平面區域表示不等式組二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解集.
【通過利用多媒體對實例的展示讓學生體會到畫出不等式表示的平面區域的基本流程:直線定界,特殊點定域,而不等式(組)表示的平面區域是各個不等式表示的平面區域的公共部分.同時對具體作圖中的細節問題進行點拔.】
(三)練習:
學生練習P86第1-3題.
【及時鞏固所學,進一步體會畫出不等式(組)表示的平面區域的基本流程】
(四)課后延伸:
師:我們在今天主要解決了在給出不等式(組)的情況下如何用平面區域來表示出來的問題.如果反過來給出了平面區域你能寫出相關的不等式(組)嗎?例如你能寫出A(2,4),B(2,0),C(1,2)三點構成的三角形內部區域對應的不等式組嗎?
你能寫出不等式形如二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計這種不等式表示的平面區域?
(五)小結與作業:
二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計某側所有點組成的平面區域,畫出不等式(組)表示的平面區域的基本流程:直線定界,特殊點定域(一般找原點)
作業:第93頁A組習題1、2,
補充作業:若線段PQ的兩個端點坐標為P(3,-1),Q(2,4),且直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計與線段PQ
高三教案數學篇4
教學目標:
1、知識與技能:
1)了解導數概念的實際背景;
2)理解導數的概念、掌握簡單函數導數符號表示和基本導數求解方法;
3)理解導數的幾何意義;
4)能進行簡單的導數四則運算。
2、過程與方法:
先理解導數概念背景,培養觀察問題的能力;再掌握定義和幾何意義,培養轉化問題的能力;最后求切線方程及運算,培養解決問題的能力。
3、情態及價值觀;
讓學生感受數學與生活之間的聯系,體會數學的美,激發學生學習興趣與主動性。
教學重點:
1、導數的求解方法和過程;
2、導數公式及運算法則的熟練運用。
教學難點:
1、導數概念及其幾何意義的理解;
2、數形結合思想的靈活運用。
教學課型:復習課(高三一輪)
高三教案數學篇5
【教學目標】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
2.能根據幾何結構特征對空間物體進行分類。
3.提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。
【教學重難點】
教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
教學難點:柱、錐、臺、球的結構特征的概括。
【教學過程】
1.情景導入
教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。
2.展示目標、檢查預習
3.合作探究、交流展示
(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。有兩個面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。
(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
(7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。
4.質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
(4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5.典型例題
例:判斷下列語句是否正確。
⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案AB
6.課堂檢測:
課本P8,習題1.1A組第1題。
7.歸納整理
由學生整理學習了哪些內容
高三教案數學篇6
教學重點:
理解等比數列的概念,認識等比數列是反映自然規律的重要數列模型之一,探索并掌握等比數列的通項公式。
教學難點:
遇到具體問題時,抽象出數列的模型和數列的等比關系,并能用有關知識解決相應問題。
教學過程:
一、復習準備
1、等差數列的通項公式。
2、等差數列的前n項和公式。
3、等差數列的性質。
二、講授新課
引入:
1、“一尺之棰,日取其半,萬世不竭。”
2、細胞分裂模型
3、計算機病毒的傳播
由學生通過類比,歸納,猜想,發現等比數列的特點
進而讓學生通過用遞推公式描述等比數列。
讓學生回憶用不完全歸納法得到等差數列的通項公式的過程然后類比等比數列的通項公式
注意:
1、公比q是任意一個常數,不僅可以是正數也可以是負數。
2、當首項等于0時,數列都是0。當公比為0時,數列也都是0。
所以首項和公比都不可以是0。
3、當公比q=1時,數列是怎么樣的,當公比q大于1,公比q小于1時數列是怎么樣的?
4、以及等比數列和指數函數的關系
5、是后一項比前一項。
列:1,2,(略)
小結:等比數列的通項公式
三、鞏固練習:
1、教材P59練習1,2,3,題
2、作業:P60習題1,4
高三教案數學篇7
一、教材分析
1.教材所處的地位和作用
現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。
2.教學的重點和難點
重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。
二、教學目標分析
1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。
2.能力目標:讓學生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學生的觀察能力,表達能力和邏輯思維能力。
3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。
三、教學方法分析
采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發現問題、分析問題、解決問題,培養學生的探究論證、邏輯思維能力。
四、學情分析
算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節,但很容易激發學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節課的內容。
五、教學過程分析
1.創設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法".
「設計意圖」是為了充分挖掘章頭圖的教學價值,體現
1)算法概念的由來;
2)我們將要學習的算法與計算機有關;
3)展示中國古代數學的成就;
4)激發學生學習算法的興趣。從而順其自然的過渡到本節課要討論的話題。(約4分鐘)
2.引入新課:在這一環節我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。
之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)
3.例題講解:在這一環節我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。
這兩道例題均選自課本的例1和例2.
例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:
(1)寫出的算法必須能解決一類問題,并且能夠重復使用。
(2)要使算法盡量簡單、步驟盡量少。
(3)要保證算法正確,且計算機能夠執行。
在例1的基礎上我們繼續研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)
4.課堂小結:
(1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然語言描述。
(3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節課的重點,對所學知識有一個系統整體的認識。(約6分鐘)
5.布置作業:課本練習1、2題
課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。
高三教案數學篇8
一、關于教材分析
1.教材的地位和作用
“曲線和方程”是高中數學第二冊(上)第七章《直線和圓的方程》的重點內容之一,是在介紹了“直線的方程”之后,對一般曲線(也包括直線)與二元方程的關系作進一步的研究。這部分內容從理論上揭示了幾何中的“形”與代數中的“數”相統一的關系,為“形”與“數”的相互轉化開辟了途徑,同時也體現了解析幾何的基本思想,為解析幾何的教學奠定了一個理論基礎。
2.教學內容的選擇和處理
本節教材主要講解曲線的方程和方程的曲線、坐標法、解析幾何等概念,討論怎樣求曲線的方程以及曲線的交點等問題。共分四課時完成,這是第一課時。此課時的主要內容是建立“曲線的方程”和“方程的曲線”這兩個概念,并對概念進行初步運用。我在處理教材時,不拘泥于教材,敢于大膽進行調整。主要體現在對曲線的方程和方程的曲線的定義進行歸納上,通過構造反例,引導學生進行觀察、討論、分析、正反對比,逐步揭示其內涵,然后在此基礎上歸納定義;再一點就是在得出定義之后,引導學生用集合觀點來理解概念。
3.教學目標的確定
根據教學大綱的要求以及本節教材的地位和作用,結合高二學生的認知特點,我認為,通過本節課的教學,應使學生理解曲線和方程的概念;會用定義來判斷點是否在方程的曲線上、證明曲線的方程;培養學生分析、判斷、歸納的邏輯思維能力,滲透數形結合的數學思想;并借用曲線與方程的關系進行辯證唯物主義觀點的教育;通過對問題的不斷探討,培養學生勇于探索的精神。
4.關于教學重點、難點和關鍵
由于曲線和方程的概念體現了解析幾何的基本思想,學生只有透徹理解了這個概念,才能用解析法去研究幾何圖形,才算是踏上解析幾何的入門之徑。因此,我把曲線和方程的概念確定為本節課的教學重點。另外,由于曲線和方程的概念比較抽象,加之剛剛進入高二的學生抽象思維能力還不是很強,因此,他們對曲線和方程關系的“純粹性”與“完備性”不易理解,弄不清它們之間的區別與聯系,易產生“為什么要規定這樣兩個關系”的疑問。所以,對概念的理解,尤其是對“兩個關系”的認識是本節課的難點。
如何突破這一難點呢?由于學生在學習本節之前,已經有了用方程表示幾何圖形的感性認識(比如用方程表示直線、拋物線、雙曲線等)。因此,突破這一難點的關鍵在于利用學生積累的這些感性認識,通過分析反例,來揭示“兩個關系”中缺少任何一個都將破壞曲線與方程的統一性(即擴大概念的外延)。
二、關于教學方法與教學手段的選用
根據本節課的教學內容和學生的實際水平,我采用的是引導發現法和CAI輔助教學。
(1)引導發現法是通過教師的引導、啟發,調動學生參與教學活動的積極性,充分發揮教師的主導作用和學生的主體作用。在教學中通過設置疑問,創造出思維情境,然后引導學生動腦、動手、動口,使學生在開放、民主、和諧的教學氛圍中獲取知識,提高能力,促進思維的發展。
(2)借助CAI輔助教學,增大教學的容量和直觀性,增強學習興趣,從而達到提高教學效果和教學質量的目的。(這也符合教學論中的直觀性原則和可接受性原則。)
(3)教具:三角板、多媒體。
三、關于學法指導
古人說得好,“授人以魚,只供一飯;教人以漁,終身受用。”我們在向學生傳授知識的同時,必須教給他們好的學習方法,讓他們學會學習、享受學習。因此,在本節課的教學中,引導學生開展“仔細看、動腦想、多交流、細比較、勤練習”的研討式學習,加大學生的參與機會,增強參與意識,讓他們體驗獲取知識的歷程,掌握思考問題的方法,逐漸培養他們“會觀察”、“會類比”、“會分析”、“會歸納”的能力。
高三教案數學篇9
教學目標
1.掌握等差數列前項和的公式,并能運用公式解決簡單的問題.
(1)了解等差數列前項和的定義,了解逆項相加的原理,理解等差數列前項和公式推導的過程,記憶公式的兩種形式;
(2)用方程思想認識等差數列前項和的公式,利用公式求;等差數列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
(3)會利用等差數列通項公式與前項和的公式研究的最值.
2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.
4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.
教學建議
(1)知識結構
本節內容是等差數列前項和公式的推導和應用,首先通過具體的例子給出了求等差數列前項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
(2)重點、難點分析
教學重點是等差數列前項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前項和公式與通項公式的綜合運用體現了方程(組)思想.
高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
(3)教法建議
①本節內容分為兩課時,一節為公式推導及簡單應用,一節側重于通項公式與前項和公式綜合運用.
②前項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.
③強調從特殊到一般,再從一般到特殊的思考方法與研究方法.
④補充等差數列前項和的值、最小值問題.
⑤用梯形面積公式記憶等差數列前項和公式.
等差數列的前項和公式教學設計示例
教學目標
1.通過教學使學生理解等差數列的前項和公式的推導過程,并能用公式解決簡單的問題.
2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數列的前項和公式的推導和應用,難點是獲得推導公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)
問題就是(板書)“”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.
我們希望求一般的等差數列的和,高斯算法對我們有何啟發?
二.講解新課
(板書)等差數列前項和公式
1.公式推導(板書)
問題(幻燈片):設等差數列的首項為,公差為,由學生討論,研究高斯算法對一般等差數列求和的指導意義.
思路一:運用基本量思想,將各項用和表示,得
,有以下等式
,問題是一共有多少個,似乎與的奇偶有關.這個思路似乎進行不下去了.
思路二:
上面的等式其實就是,為回避個數問題,做一個改寫,,兩式左右分別相加,得
,
于是有:.這就是倒序相加法.
思路三:受思路二的啟發,重新調整思路一,可得,于是.
于是得到了兩個公式(投影片):和.
2.公式記憶
用梯形面積公式記憶等差數列前項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前項和的兩個公式.
3.公式的應用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1);
(2)(結果用表示)
解題的關鍵是數清項數,小結數項數的方法.
例2.等差數列中前多少項的和是9900?
本題實質是反用公式,解一個關于的一元二次函數,注意得到的項數必須是正整數.
三.小結
1.推導等差數列前項和公式的思路;
2.公式的應用中的數學思想.
四.板書設計
高三教案數學篇10
教學目標
(1)掌握向量的有關概念:向量及其表示法、向量的模、向量的相等、零向量;
(2)理解并掌握復數集、復平面內的點的集合、復平面內以原點為起點的向量集合之間的一一對應關系;
(3)掌握復數的模的定義及其幾何意義;
(4)通過學習,培養學生的數形結合的數學思想;
(5)通過本節內容的學習,培養學生的觀察能力、分析能力,幫助學生逐步形成科學的思維習慣和方法
教學建議
一、知識結構
本節內容首先從物理中所遇到的一些矢量出發引出向量的概念,介紹了向量及其表示法、向量的模、向量的相等、零向量的概念,接著介紹了復數集與復平面內以原點為起點的向量集合之間的一一對應關系,指出了復數的模的定義及其計算公式
二、重點、難點分析
本節的重點是復數與復平面的向量的一一對應關系的理解;難點是復數模的概念復數可以用向量表示,二者的對應關系為什么只能說復數集與以原點為起點的向量的集合一一對應關系,而不能說與復平面內的向量一一對應,對這一點的理解要加以重視在復數向量的表示中,從復數集與復平面內的點以及以原點為起點的向量之間的一一對應關系是本節教學的難點復數模的概念是一個難點,首先要理解復數的絕對值與實數絕對值定義的一致性質,其次要理解它的幾何意義是表示向量的長度,也就是復平面上的點到原點的距離
三、教學建議
1在學習新課之前一定要復習舊知識,包括實數的絕對值及幾何意義,復數的有關概念、現行高中物理課本中的有關矢量知識等,特別是對于基礎較差的學生,這一環節不可忽視
2理解并掌握復數集、復平面內的點集、復平面內以原點為起點的向量集合三者之間的關系
如圖所示,建立復平面以后,復數 與復平面內的點形成—一對應關系,而點又與復平面的向量構成—一對應關系因此,復數集與復平面的以為起點,以為終點的向量集 形成—一對應關系因此,我們常把復數說成點Z或說成向量點、向量是復數的另外兩種表示形式,它們都是復數的幾何表示
相等的向量對應的是同一個復數,復平面內與向量 相等的向量有無窮多個,所以復數集不能與復平面上所有的向量相成—一對應關系復數集只能與復平面上以原點為起點的向量集合構成—一對應關系
2
這種對應關系的建立,為我們用解析幾何方法解決復數問題,或用復數方法解決幾何問題創造了條件
3向量的模,又叫向量的絕對值,也就是其有向線段的長度它的計算公式是 ,當實部為零時,根據上面復數的模的公式與以前關于實數絕對值及算術平方根的規定一致這些內容必須使學生在理解的基礎上牢固地掌握
4講解教材第182頁上例2的第(1)小題建議在講解教材第182頁上例2的第(1)小題時如果結合提問 的圖形,可以幫助學生正確理解教材中的“圓”是指曲線而不是指圓面(曲線所包圍的平面部分)對于倒2的第(2)小題的圖形,畫圖時周界(兩個同心圓)都應畫成虛線
高三教案數學篇11
知識結構
重難點分析
本節的重點是菱形的性質和判定定理。菱形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。菱形的這些性質和判定定理即是平行四邊形性質與判定的延續,又是以后要學習的正方形的基礎。
本節的難點是菱形性質的靈活應用。由于菱形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是菱形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程 中應給予足夠重視。
教法建議
根據本節內容的特點和與平行四邊形的關系,建議教師在教學過程 中注意以下問題:
1.菱形的.知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.菱形在現實中的實例較多,在講解菱形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.
3. 如果條件允許,教師在講授這節內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程 中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4. 在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.
5. 由于菱形和菱形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在菱形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學目標
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.掌握菱形的性質.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養學生的學習興趣.
5.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
6.通過菱形性質的學習,體會菱形的圖形美.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:菱形的性質定理.
2.教學難點 :把菱形的性質和直角三角形的知識綜合應用.
3.疑點:菱形與矩形的性質的區別.
四、課時安排
1課時
五、教具學具準備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
【復習提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.矩形中對角線與大邊的夾角為 ,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成 、 ,求矩形的周長.
【引入新課】
我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出菱形概念.
【講解新課】
1.菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
講解這個定義時,要抓住概念的本質,應突出兩條:
(1)強調菱形是平行四邊形.
(2)一組鄰邊相等.
2.菱形的性質:
教師強調,菱形既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.
下面研究菱形的性質:
師:同學們根據菱形的定義結合圖形猜一下菱形有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).
生:因為菱形是有一組鄰邊相等的平行四邊形,所以根據平行四邊形對邊相等的性質可以得到.
菱形性質定理1:菱形的四條邊都相等.
由菱形的四條邊都相等,根據平行四邊形對角線互相平分,可以得到
菱形性質定理2:菱形的對角線互相垂直并且每一條對角線平分一組對角.
引導學生完成定理的規范證明.
師:觀察右圖,菱形 被對角線分成的四個直角三角形有什么關系?
生:全等.
師:它們的底和高和兩條對角線有什么關系?
生:分別是兩條對角線的一半.
師:如果設菱形的兩條對角線分別為 、 ,則菱形的面積是什么?
生:
教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算菱形面積.
例2 已知:如右圖, 是△ 的角平分線, 交 于 , 交 于 .
求證:四邊形 是菱形.
(引導學生用菱形定義來判定.)
例3 已知菱形 的邊長為 , ,對角線 , 相交于點 ,如右圖,求這個菱形的對角線長和面積.
(1)按教材的方法求面積.
(2)還可以引導學生求出△ 一邊上的高,即菱形的高,然后用平行四邊形的面積公式計算菱形的面積.
【總結、擴展】
1.小結:(打出投影)(圖4)
(1)菱形、平行四邊形、四邊形的從屬關系:
(2)菱形性質:圖5
①具有平行四邊形的所有性質.
②特有性質:四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業
教材P158中6、7、8,P196中10
九、板書設計
標題
菱形定義……
菱形性質 例2…… 小結:
性質定理1:…… 例3…… ……
性質定理2:……
十、隨堂練習
教材P151中1、2、3
補充
1.菱形的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.菱形周長為80,一對角線為20,則相鄰兩角的度數為___________、____________.
高三教案數學篇12
一、過程目標
1通過師生之間、學生與學生之間的互相交流,培養學生的數學交流能力和與人合作的精神。
2通過對對數函數的學習,樹立相互聯系、相互轉化的觀點,滲透數形結合的數學思想。
3通過對對數函數有關性質的研究,培養學生觀察、分析、歸納的思維能力。
二、識技能目標
1理解對數函數的概念,能正確描繪對數函數的圖象,感受研究對數函數的意義。
2掌握對數函數的性質,并能初步應用對數的性質解決簡單問題。
三、情感目標
1通過學習對數函數的概念、圖象和性質,使學生體會知識之間的有機聯系,激發學生的學習興趣。
2在教學過程中,通過對數函數有關性質的研究,培養觀察、分析、歸納的思維能力以及數學交流能力,增強學習的積極性,同時培養學生傾聽、接受別人意見的優良品質。
教學重點難點:
1對數函數的定義、圖象和性質。
2對數函數性質的初步應用。
教學工具:多媒體
高三教案數學篇13
一、教材結構與內容簡析
1、本節內容在全書及章節的地位:
《向量》出現在高中數學第一冊(下)第五章第1節。本節內容是傳統意義上《平面解析幾何》的基礎部分,因此,在《數學》這門學科中,占據極其重要的地位。
2、數學思想方法分析:
(1)從“向量可以用有向線段來表示”所反映出的“數”與“形”之間的轉化,就可以看到《數學》本身的“量化”與“物化”。
(2)從建構手段角度分析,在教材所提供的材料中,可以看到“數形結合”思想。
二、教學目標
根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
1、基礎知識目標:掌握“向量”的概念及其表示方法,能利用它們解決相關的問題。
2、能力訓練目標:逐步培養學生觀察、分析、綜合和類比能力,會準確地闡述自己的思路和觀點,著重培養學生的認知和元認知能力。
3、創新素質目標:引導學生從日常生活中挖掘數學內容,培養學生的發現意識和整合能力;《向量》的教學旨在培養學生的“知識重組”意識和“數形結合”能力。
4、個性品質目標:培養學生勇于探索,善于發現,獨立意識以及不斷超越自我的創新品質。
三、教學重點、難點、關鍵
重點:向量概念的引入。
難點:“數”與“形”完美結合。
關鍵:本節課通過“數形結合”,著重培養和發展學生的認知和變通能力。
四、教材處理
建構就是認知結構的組建,其過程一般是先把知識點按照邏輯線索和內在聯系,串成知識線,再由若干條知識線形成知識面,最后由知識面按照其內容、性質、作用、因果等關系組成綜合的知識體。本課時為何提出“數形結合”呢,應該說,這一處理方法正是基于此理論的體現。其次,本節課處理過程力求達到解決如下問題:知識是如何產生的?如何發展?又如何從實際問題抽象成為數學問題,并賦予抽象的數學符號和表達式,如何反映生活中客觀事物之間簡單的和諧關系。
五、教學模式
教學過程是教師活動和學生活動的十分復雜的動態性總體,是教師和全體學生積極參與下,進行集體認識的過程。教為主導,學為主體,又互為客體。啟動學生自主性學習,啟發引導學生實踐數學思維的過程,自得知識,自覓規律,自悟原理,主動發展思維和能力。
六、學習方法
1、讓學生在認知過程中,著重掌握元認知過程。
2、使學生把獨立思考與多向交流相結合。
高三教案數學篇14
一、教學目標
1、知識與技能
(1)理解對數的概念,了解對數與指數的關系;
(2)能夠進行指數式與對數式的互化;
(3)理解對數的性質,掌握以上知識并培養類比、分析、歸納能力;
2、過程與方法
3、情感態度與價值觀
(1)通過本節的學習體驗數學的嚴謹性,培養細心觀察、認真分析嚴謹認真的良好思維習慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;
(3)體驗數學的科學功能、符號功能和工具功能,培養直覺觀察、
探索發現、科學論證的良好的數學思維品質、
二、教學重點、難點
教學重點
(1)對數的&39;定義;
(2)指數式與對數式的互化;
教學難點
(1)對數概念的理解;
(2)對數性質的理解;
三、教學過程:
四、歸納總結:
1、對數的概念
一般地,如果函數ax=n(a0且a≠1)那么數x叫做以a為底n的對數,記作x=logan,其中a叫做對數的底數,n叫做真數。
2、對數與指數的互化
ab=n?logan=b
3、對數的基本性質
負數和零沒有對數;loga1=0;logaa=1對數恒等式:alogan=n;logaa=nn
五、課后作業
課后練習1、2、3、4
高三教案數學篇15
一 教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二 教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
(四)歸納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(七)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。
五 板書設計
板書設計可以讓學生一目了然本節課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。
