初一數學教案
編寫教案可以幫助教師更好地把握教學目標和教學內容,提高教學質量和效果。好的初一數學教案要怎么寫?小編給大家帶來初一數學教案,供大家參考。
初一數學教案篇1
學習目標:
1、會進行包括小數或分數的有理數的加減混合運算。
2、熟練地進行有理數加減混合運算,并利用運算律簡化運算。
3、會比較“加減法統一為加法”與“省略加號的代數和”兩種計算形式。
學習重難點:
1、準確迅速地進行有理數的加減混合運算,加減運算法則和加法運算律。
2、減法直接轉化為加法及混合運算的準確性,省略加號與括號的代數和計算。
學習過程:
任務一:溫故知新
1、完成課本44頁習題2、7的第1、2題,寫在作業本上。
2、6有理數的加減混合運算》課時練習
一、選擇題(共10題)
1、下列關于有理數的加法說法錯誤的是()
A、同號兩數相加,取相同的符號,并把絕對值相加
B、異號兩數相加,絕對值相等時和為0
C、互為相反數的兩數相加得0
D、絕對值不等時,取絕對值較小的數的符號作為和的符號
答案:D
解析:解答:D選項應該是有理數相加時,如果絕對值不等時,取絕對值較小的數的&39;符號作為和的符號
分析:考查有理數的的加法法則
《2、6有理數的加減混合運算》同步練習
2、有一架直升飛機從海拔1000米的高原上起飛,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此時這架飛機離海平面多少米?
3、10名學生體檢測體重,以50千克為基準,超過的數記為正,不足的數記為負,稱得結果如下(單位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
這10名學生的總體重為多少?10名學生的平均體重為多少?
初一數學教案篇2
一、素質教育目標
(一)知識教學點
1.使學生理解近似數和有效數字的意義
2.給一個近似數,能說出它精確到哪一痊,它有幾個有效數字
3.使學生了解近似數和有效數字是在實踐中產生的.
(二)能力訓練點
通過說出一個近似數的精確度和有效數字,培養學生把握關鍵字詞,準確理解概念的能力.
(三)德育滲透點
通過近似數的學習,向學生滲透具體問題具體分析的辯證唯物主義思想
(四)美育滲透點
由于實際生活中有時要把結果搞得準確是辦不到的或沒有必要,所以近似數應運而生,近似數和準確數給人以美的享受.
二、學法引導
1.教學方法:從實際問題出發,啟發引導,充分體現學生為主全,注重學生參與意識
2.學生學法,從身邊找出應用近似數,準確數的例子→近似數概念→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:理解近似數的精確度和有效數字.
2.難點:正確把握一個近似數的精確度及它的有效數字的個數.
3.疑點:用科學記數法表示的近似數的精確度和有效數字的個數.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片
六、師生互動活動設計
教者提出生活中應用準確數和近似數的例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數字的概念,教者提出近似數的有關問題,學生討論解決.
七、教學步驟
(一)提出問題,創設情境
師:有10千克蘋果,平均分給3個人,應該怎樣分?
生:平均每人千克
師:給你一架天平,你能準確地稱出每人所得蘋果的千克數嗎?
生:不能
師:哪怎么分
生:取近似值
師:板書課題
【教法說明】通過提出實際問題,使學生認識到研究近似數是必須的,是自然的,從而提高學生近似數的積極性
(二)探索新知,講授新課
師出示投影1
下列實際問題中出現的數,哪些是精確數,哪些是近似數.
(1)初一(1)有55名同學
(2)地球的半徑約為6370千米
(3)中華人民共和國現在有31個省級行政單位
(4)小明的身高接近1.6米
學生活動:回答上述問題后,自己找出生活中應用準確數和近似數的例子.
師:我們在解決實際問題時,有許多時候只能用近似數你知道為什么嗎?
啟發學生得出兩方面原因:1.搞得完全準確有時是辦不到的,2.往往也沒有必要搞得完全準確.
以開始提出的問題為例,揭示近似數的有關概念
板書:
1.精確度
2.有效數字:一般地,一個近似數,四舍五入到哪一位,就說這個數精確到哪一位,這時,從左邊第一個不是0的數字起,到精確的數位止,所有的數字,都叫做這個數的&39;有效數字.
例如:3.3有二個有效數字
3.33有三個有效數字
討論:近似數0.038有幾個有效數字,0.03080呢?
【教法說明】通過討論學生明確近似數的有效數字需注意的兩點:一是從左邊第一個不是零的數起;二是從左邊第一個不是零的數起,到精確的位數止,所有的數字,教者在有效數字概念對應的文字底下畫上波浪線,標上①、②
例1.(出示投影2)
下列由四舍五入吸到近似數,各精確到哪一位,各有哪幾個有效數字?
(1)43.8(2).03086(3)2.4萬
學生口述解題過程,教者板書.
對于近似數2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數與5.4和近似數5.4萬中的兩個4的數位有什么不同,從而得出正確的答案.
【教法說明】對于疑點問題,通過啟發討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.
鞏固練習見課本122頁練習2、3頁
例2(出示投影3)
下列由四舍五入得來的近似數,各精確到哪一位,各有幾個有效數字?
初一數學教案篇3
1.進一步理解字母表示數的意義,會用含字母的式子表示實際問題中的數量關系.
2.經歷用含有字母的式子表示實際問題數量關系的過程,體會從具體到抽象的認識過程,發展符號意識.
進一步理解字母表示數的意義,會用含字母的式子表示實際問題中的數量關系.
分析題目中的數量關系,用式子表示數量關系.
(設計者:)
一、創設情境明確目標
青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段.列車在凍土地段的行駛速度是100km/h,列車在凍土地段的行駛時,根據已知數據求出列車行駛的路程.
(1)2h行駛的路程是多少?3h呢?th呢?
(2)字母t表示時間有什么意義?如果用v表示速度,列車行駛的路程是多少?
(3)回顧以前所學的知識,你還能舉出用字母表示數或數量關系的例子嗎?
二、自主學習指向目標
自學教材第54至55頁,完成下列問題:
1.假設列車的行駛速度是100km/h,根據路程、速度、時間之間的關系:路程=速度×時間,請寫出:
(1)列車2h行駛的路程為__200__km.
(2)列車3h行駛的路程為__300__km.
(3)列車th行駛的路程為__100t__km.
2.在含有字母的式子中如果出現乘號,通常將乘號寫作__·__或__省略不寫__.
三、合作探究達成目標
用字母表示數
活動一:(1)蘋果原價是每千克p元,按8折優惠出售,用式子表示現價;
(2)某產品前年的產量是n件,去年的產量是前年產量的m倍,用式子表示去年的產量;
(3)一個長方體包裝盒的長和寬都是acm,高是hcm,用式子表示它的體積;
(4)用式子表示數n的相反數.
【展示點評】解答過程見教材第54頁例1的解.含有字母的式子中如果出現乘號,寫成“·”或省略不寫.如第(3)小題,就不能寫成a2·h.
【小組討論】用字母表示數有什么意義?
【反思小結】字母可以表示任意的數,也可以表示特定意義的公式,還可以表示符合條件的某一個數,甚至可以表示具有某些規律的數,總之字母可以簡明的將數量關系表示出來.
【針對訓練】見“學生用書”.
用字母表示簡單的數量關系
活動二:閱讀教科書例2中的四個問題,思考:
順水行駛時,船的速度=________+________;
逆水行駛時,船的速度=________-________.
解答過程見教材第55頁例2的解答過程.
【展示點評】列式表示關系時,一定要搞清“和”、“差”、“積”、“倍”等關系.
【小組討論】用含有字母的式子表示數量關系時,關鍵是什么?應注意什么問題?
【反思小結】用含有字母的式子表示數量關系時,關鍵是找準題目中的.數量關系.
注意:1.用字母表示數時,數字與字母,字母與字母相乘,中間的乘號可以省略不寫或用“·”表示;
2.字母和數字相乘時,省略乘號,并把數字放到字母前;
3.出現除式時,用分數的形式表示;
4.結果含加減運算的,需要帶單位時,式子要用“()”;
5.系數是帶分數時,帶分數要化成假分數.
【針對訓練】見“學生用書”.
四、總結梳理內化目標
1.用字母表示數的意義.
2.用含有字母的式子表示數量關系的意義.
3.用含有字母的式子表示數量關系時要注意的問題.
實際問題―→用字母表示數―→用字母表示數量關系
《2.1整式》同步練習含答案
1.其中長方形的長為a,寬為b.
(1)陰影部分的面積是多少?
(2)你能判斷它是單項式或多項式嗎?它的次數是多少?
《2.1整式》課后練習含答案
知識要點
1.單項式:只含有數和字母的乘積的代數式叫做單項式.單獨的一個數或一個字母也是單項式.它的本質特征在于:
(1)不含加減運算;
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數、系數:一個單項式中,所有字母的指數和叫做這個單項式的次數.單項式中的數字因數叫做這個單項式的系數.
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數項.一個多項式中,次數最高的項的次數,叫做這個多項式的次數.
4.整式:單項和多項式統稱整式.
初一數學教案篇4
《有理數的加法法則》選是九年義務教育華師大版上學期第2章第6節的內容,本節內容安排兩個課時,本課時是本節內容的第一課時。
有理數的加法運算是建立在算術加法運算和有理數意義的基礎上展開的,學好有理數的加法運算是學習其他有理數運算,以及后繼要學到的實數、代數式、方程、不等式、函數等知識的前提。有理數的加法運算是建構在生產、生活實例上,展現了數學來源于實踐,又應用于實踐的過程。
本節課的教學目標為:
認知目標:
1、理解有理數加法的意義。
2、理解并掌握有理數加法法則。
3、應用有理數加法法則進行準確運算。
能力目標:
1、讓學生體會數形結合思想、轉化思想與分類思想。
2、培養學生準確運算能力和歸納總結知識的能力。
情感目標:通過豐富的數學活動培養學生對數學的熱愛和樹立學習的自信心。
本節課的重點:有理數加法法則的理解和應用。突破策略:
1、利用多媒體手段,借助于動畫演示,化抽象為具體。
2、講清楚探究有理數加法法則的方法和過程。
由于七年級的學生是第一次接觸到帶有符號的兩個數相加,必須克服小學里長期形成的算術加法運算的思維定勢,而解決異號兩數相加時有關符號和絕對值的問題有一定難度,因此,本節課的難點是對異號兩數相加加法法則的理解和應用。
突破策略:
1、精選各種有趣體型,讓學生通過訓練,嘗試成功。
2、利用多媒體手段,借助于動畫演示,化抽象為形象,化難為易。
根據弗賴登塔爾的數學教育理論:“數學起源于現實,數學教育的過程是學習‘數學化’的過程,而學生學習數學是一個‘再創造’的過程。”所以本節課我主要采用“引導——發現法”并借助于計算機課件,通過“問題情境——建立模型——解釋、應用與拓展”的模式展開教學。
七年級的學生是智力發展的關鍵年齡,他們活潑好動,注意力易分散,愛發表見解,并希望得到老師的表揚。所以我抓住學生的這一生理特點,努力創造條件和機會,讓學生發表見解,發揮學習的主動性;并適當運用多媒體演示,吸引學生的興趣,使學生的注意力始終集中在課堂上。
《數學課程標準》明確指出:“數學教學是數學活動的教學,學生是數學學習的主人。”為能更多地向學生提供從事數學活動的機會,我將本節課的教學過程設計如下:
第一個環節發現新知,在這個環節里我設置了兩個活動。活動一,根據“興趣是學生最好的老師”我選用學生感興趣的足球比賽引入課題。讓學生通過對得分的觀察,體會到如果加法運算僅局限在小學當中的算術加法運算是不夠的,從而順理成章的引入今天的課題:有理數的加法。
活動二:探索交流。美國學者奧蘇伯爾稱:必要的經驗和預備知識,為先行組織者,而學生已經在2、1至2、5中學了有理數的意義,這些都為學生探索法則架起了橋梁作用的組織者,在此基礎上,我設置了六個探究活動。即以原點為起點,一只小狗在數軸上左右走動來表示情況,規定向左為負,向右為正。這樣借助數軸幫助學生理解。既滲透了分類思想又滲透了數形結合思想,最后再由學生對整個規律進行總結歸納補充,從而得出了有理數加法法則。
法則得出后,我設置了一個小活動,比比誰聰明,讓學生觀察法則中1、2用簡短的兩句話進行概括,教師在充分肯定學生的回答后給出:同號不變值相加,異號取大值相減。在此基礎上再讓學生更加深入地熟悉法則,教師繼續強調符號與絕對值。
這時只能說學生對法則有了初步的了解,為了加深學生對法則的理解,我設置了第二個環節再探新知。整個法則中尤其強調的是符號與絕對值,為能讓學生更加直觀地認識到這一點,我讓他們解決創設情景中的動漫表格的問題,以個別提問的方式讓學生通過表格的填寫,體會到整個和的組成就是由符號與絕對值兩部分,從而體現了本節課的重點與難點,加深了學生對法則的理解。
在此基礎上,我設置了第三個環節應用新知,首先我設置了一道例題(1)(—6)+(—8)(2)(—3、4)+4、3(3)(+1/2)+(—2/3),由于課前有讓學生預習,所以例題是由學生自主完成,作完后由基礎較薄弱的學生進行板演,對于板演時出現錯誤的題目,可由學生自行更正,最后師生共同評述。例題以這樣的形式完成,可以使得全體學生尤其是學有困難的學生都能達到基本的學習目標,獲得成功的喜悅。
緊接著,我設計了練習。課前我按照學習程度均衡的原則,將本班分成A、B、C、D四個小組。我設置了一道搶答題,由組間進行搶答,對于搶答成功的小組給予福娃獎勵,最后以福娃個數多的小組獲勝,以此激發學生學習的興趣。
根據七年級學生的年齡特征,為能更大限度地吸引學生的興趣,我還設置了這樣一個活動:男生出題,女生回答;女生出題,男生回答。將整節課推向了高潮。在學生興趣正濃時,我設置了一個小游戲,玩有理數牌,請同桌間的兩個同學,各自抽取一張牌,進行求和比賽,看誰算得又快又準。教師在學生之間巡回參與活動。這樣設計符合學生年齡特征的游戲,體現了新課改理論,讓學生在“學在玩”在“玩中學”。
設置練習時,除了在形式上做了充分的考慮之外,我還注意到學生的思維是一個循序漸進的過程。所以除了剛才所設置的基礎訓練之外,我還設置了變式練習。第一題((—5)+()=—8)以填空的形式出現,如果題目是,那么大部分學生馬上可以得到—8,所以以這樣的形式出現就對學生的解題造成了困難。通過對這道題目的解答,可加深學生對法則的理解,并為緊接著要學的有理數減法作好鋪墊,同時也培養了學生發散思維的能力。第2題(一只小狗在一條東西向的跑道上,先走了50米,又走了30米,他現在位于原來位置的哪個方面,與原來位置相跑多少?)與之前的探究活動相呼應,須分四種情況進行討論。從而培養了學生的分類思想。
為體現數學來源于生活,又服務于生活。我設置了這樣一道應用題(星期天,小明與爸爸在安溪中國茶都代售茶葉,爸爸獲利120元,而小明卻獲利-20元,問這一天他們共賺了多少錢?)通過此題,激發學生學習數學的熱情。
此節課的教學,可以有多種不同的設計方案、大體上可以分為兩類:一類是較快地由教師給出法則,用較多的時間組織學生練習,以求熟練地掌握法則;另一類是適當加強法則的形成過程,從而在此過程中著力培養學生的觀察、比較、歸納能力,相應地適當壓縮應用法則的練習,如本教學設計、
這種方案減少了應用法則進行計算的練習,所以學生掌握法則的熟練程度可能稍差,這是教學中應當注意的問題、但是,在后續的教學中學生將千萬次應用“有理數加法法則”進行計算,故這種缺陷是可以得到彌補的、第一種方案削弱了得出結論的“過程”,失去了培養學生觀察、比較、歸納能力的一次機會、權衡利弊,我們主張采用第二種教學方法。
總之,整個教學旨在,通過創設問題情境,引導學生進行分類、觀察、分析,進而歸納從具體到一般的規律,得出有理數加法法則,在學生的學習過程中,充分讓學生感受、體會知識的產生和發展過程,注重促使學生積極思維,主動探索,用于發現。
初一數學教案篇5
學習目標
1.理解有序數對的應用意義,了解平面上確定點的常用方法
2.培養用數學的意識,激發學習興趣.
學習重點: 理解有序數對的意義和作用
學習難點: 用有序數對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數據找到位置的。
你能舉出生活中利用數據表示位置的例子嗎?
二.概念確定
有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)
利用有序數對,可以很準確地表示出一個位置。
1.在教室里,根據座位圖,確定數學課代表的.位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km處。
例2如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
[鞏固練習]
1.如圖是某城市市區的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2.如圖,馬所處的位置為(2,3).
(1)你能表示出象的位置嗎?
(2)寫出馬的下一步可以到達的位置。
[小結]
1.為什么要用有序數對表示點的位置,沒有順序可以嗎?
2.幾種常用的表示點位置的方法.
[作業]
必做題:教科書44頁:1題
初一數學教案篇6
教學目的
1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。
2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現由甲獨做10小時;請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節課主要分析了工作問題中工作量、工作效率和工作時間之間的關系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業
教科書習題6.3.3第1、2題。
初一數學教案篇7
初一上冊數學教案,歡迎各位老師和學生參考!
學習目標:1、理解有理數的絕對值和相反數的意義。
2、會求已知數的相反數和絕對值。
3、會用絕對值比較兩個負數的大小。
4、經歷將實際問題數學化的過程,感受數學與生活的聯系。
學習重點:1.會用絕對值比較兩個負數的大小。
2.會求已知數的相反數和絕對值。
學習難點:理解有理數的絕對值和相反數的意義。
學習過程:
一、創設情境
根據絕對值與相反數的意義填空:
1、
2、
-5的相反數是______,-10.5的相反數是______,的&39;相反數是______;
3、0=______,0的相反數是______。
二、探索感悟
1、議一議
(1)任意說出一個數,說出它的絕對值、它的相反數。
(2)一個數的絕對值與這個數本身或它的相反數有什么關系?
2、想一想
(1)2與3哪個大?這兩個數的絕對值哪個大?
(2)-1與-4哪個大?這兩個數的絕對值哪個大?
(3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?
(4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?
三.例題精講
例1.求下列各數的絕對值:
+9,-16,-0.2,0.
求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?
(2)數軸上的點的大小是如何排列的?
例2比較-10.12與-5.2的大小。
例3.求6、-6、14、-14的絕對值。
小節與思考:
這節課你有何收獲?
四.練習
1.填空:
⑴的符號是,絕對值是;
⑵10.5的符號是,絕對值是
⑶符號是+號,絕對值是的數是
⑷符號是-號,絕對值是9的數是;
⑸符號是-號,絕對值是0.37的數是.
2.正式足球比賽時所用足球的質量有嚴格的規定,下表是6個足球的質量檢測結果(用正數記超過規定質量的克數,用負數記不足規定質量的克數).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數的大小
(1)-0.7與-1.7(2)(3)(4)-5與0
五、布置作業:
P25習題2.35
家庭作業:《評價手冊》《補充習題》
六、學后記/教后記
這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!
初一數學教案篇8
【學習目標】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,學會檢驗一個數值是不是方程的解的方法。
【重點難點】能驗證一個數是否是一個方程的解。
1.某工廠加強節能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度,如果設上半年每月平均用電x度,那么所列方程正確的是()
A.6x+6(x-2000)=150000
B.6x+6(x+2000)=150000
C.6x+6(x-2000)=15
D.6x+6(x+2000)=15
2.李紅買了8個蓮蓬,付50元,找回38元.設每個蓮蓬的價格為x元,根據題意,列出方程為________.
3.一個正方形花圃邊長增加2m,所得新正方形花圃的`周長是28m,則原正方形花圃的邊長是多少?(只列方程)
《3.1.等式的性質》同步四維訓練含答案
知識點一:等式的性質1
1.下列變形錯誤的是(D)
A.若a=b,則a+c=b+c
B.若a+2=b+2,則a=b
C.若4=x-1,則x=4+1
D.若2+x=3,則x=3+2
2.已知m+a=n+b,根據等式的性質變形為m=n,那么a,b必須符合的條件是(C)
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1從算式到方程》同步練習含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故選B.
根據方程解的定義,將方程的解代入方程,就可得一個關于字母a的一元一次方程,從而可求出a的值.
本題考查了方程的解的定義,解決本題的關鍵在于:根據方程的解的定義將x=3代入,從而轉化為關于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7沒有未知數,不是方程;
D、2x<5不是等式,不是方程;
故選:A.
根據方程的定義:含有未知數的等式叫方程解答即可.數或整式
初一數學教案篇9
【教學目標】
1、經歷探索去括號法則的過程,了解去括號法則的依據。
2、會用去括號進行簡單的計算。
3、經歷觀察、歸納等教學活動,培養學生合作精神和探究問題的能力。
【重、難點】
理解去括號法則,熟練運用去括號法則。
【教學過程】
一、情境創設
在假期的勤工儉學活動中,小亮從報社以每份0。4元的價格購進a份報紙,以每份0。5元的價格賣出b份(b≤a)報紙,剩余的報紙以每份0。2元的價格退回報社,小亮贏利多少元?
思考:如何合并你算出的這個代數式中的`同類項?
同步測試
1、七年級(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人數多。試回答下列問題。(用代數式來表示,能化簡的化簡)
(1)女生有多少人?
(2)男生比女生多多少人?
(3)全班共有多少人?
測試
【拓展提優】
14、如果A是三次多項式,B是三次多項式,那么A+B一定是()
A、六次多項式
B、次數不高于3的整式
C、三次多項式
D、次數不低于3的整式
15、多項式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()
A、與x、y、z均有關
B、與x有關,而與y、z無關
C、與x、y有關,而與z無關
D、與x、y、z均無關
16、已知a=20__+20__,b=20__+20__,c=20__+20__,那么(a—b)2+(b—c)2+(c—a)2的值等于()
A、4B、6C、8D、10
17、當x=1時,代數式mx3+nx+1的值為20__,則當x=—1時,代數式mx3+nx+1的值為()
A、—20__B、—20__C、—20__D、—20__
18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,則8a2—13ab—15b2等于()
A、2M—NB、3M—2NC、4M—ND、2M—3N
19、把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為mcm,寬為ncm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示。則圖②中兩塊陰影部分的周長和是()
A、4mcmB、4ncm
C、2(m+n)cmD、4(m—n)cm
初一數學教案篇10
【教學目標】
知識與技能
1、理解三種統計圖各自的特點、
2、根據不同的問題選擇適當的統計圖、
過程與方法
1、訓練學生作圖的技能、通過數據處理體會統計對決策的作用、
2、能夠根據實際問題,選擇適當的統計圖清晰、有效地展示數據、
3、能從條形統計圖、折線統計圖、扇形統計圖中獲取信息、
情感、態度與價值觀
統計圖是展示數據的重要方法,它也經常出現在媒體上、通過對三種統計圖的認識、制作和選擇進一步培養學生對數據處理的能力及統計觀念,使學生深刻體會到數學和我們的社會、生活密切相關、
【教學重難點】
重點:
1、了解不同統計圖的特點、
2、根據實際問題選擇合適的統計圖,培養統計觀念、
難點:
1、根據實際問題選擇合適的統計圖、
2、制作三種統計圖并會從中獲取有用的信息、
【教學過程】
一、創設情境,引入新課
師:在我們日常所接觸的報刊、雜志及電視中,我們會經常見到一些統計圖、最近,我在一本百科全書上就遇到了這樣的情況:
我們知道地球上有人類生存至少已有200萬年的歷史、在相當長的.一段時間內,地球上的人口數量并不是很多,因為出生的人口和死亡的人口大致持平、然而隨著農業耕作水平的不斷提高和醫療條件的不斷改善,世界人口開始急劇增加、目前,世界人口已超過70億,平均每4天要出生100萬以上的嬰兒、在世界上的許多地方,人口的過快增長已造成了一系列嚴重的問題,例如食品短缺和城市過分擁擠等、
下面我們來看兩幅統計圖,了解一下世界人口在各大洲的百分比分布及世界人口增長的狀況,也許能讓我們很好地了解世界人口的狀況、
課件出示相關圖示、
師:你會從世界人口增長圖中獲得哪些信息呢?在哪一段時間,世界人口的增長率變化不大?在哪一段時間,世界人口就翻了一番?20__年,世界人口預測將達到多少?
生:從世界人口增長圖中,我們可以看到公元1500年,人口達4.25億;在公元1800年以前世界人口增長率的情況變化不大;但從公元1800年起,世界人口就開始迅速增長、當時醫療條件得到了改善,糧食產量增加以及工業革命的影響,世界人口才開始迅速增長、
師:這位同學回答得很好!從世界人口增長的情況還能聯系到當時的歷史背景,看來我們的統計圖不僅是數據的展現,而且還是歷史背景的再現、
生:從統計圖中,我們還看到1950年~1990年這段時間人口翻了一番,而且從圖上還可以預測出20__年世界人口將達到85億、
師:我們再接著分析“世界人口的百分比分布圖”、這是一個什么形式的統計圖?
生:扇形統計圖,條形統計圖、
師:這個統計圖是在扇形統計圖的基礎上綜合改造得到的根據這個統計圖你又能得到何種信息呢?扇形統計圖反映的是世界人口在七大洲的分布嗎?聯系我們前兩節課學的內容,同學們可針對這個統計圖討論交流、
(教師此時可參與到學生的討論中,看同學們如何認識這個統計圖、從統計圖中得到的信息是否準確、根據學生討論交流的情況進行講評、)
生:扇形統計圖是地球陸地面積分布統計圖,條形統計圖才是相應各大洲人口占世界人口的百分比、由此我們可以看出人口在地球上的分布是不均勻的,像亞洲陸地面積占地球陸地總面積的29.3%,可人口卻占世界人口的63%;而北美洲陸地面積占地球陸地總面積的16.1%,人口只占世界人口的6.9%;南極洲陸地面積占地球陸地總面積的9、3%,那個地方卻由于氣候、地理位置等不同成為無人區、所以有些地區自然條件很差,人口很少,而有些地區土地肥沃,交通方便,人口相對集中、
師:很好!同學們已經能用數學中統計的眼光去觀察、分析我們生存的這個世界、現在我們再來看某家報刊公布的反映世界人口情況的數據、
二、講授新課
師:請同學們觀察下面的統計圖,你能盡可能的獲取信息嗎?
生1:從統計圖中,我們可知50年后,世界人口將達到90億、
生2:我們還可以看到從__年到20__年世界人口的變化情況、
生3:從__年到__年,世界人口由30億增加到40億;從__年到__年,世界人口由40億增加到50億;__年到__年由50億增加到60億、由此預測__年到__年世界人口從?
6、4、1統計圖的選擇:課后作業
(20__·武漢)為了解學生課外閱讀的喜好,某校從八年級隨機抽取部分學生進行問卷調查,調查要求每人只選取一種喜歡的書籍、如果沒有喜歡的書籍,則作“其他”類統計、圖①與圖②是整理數據后繪制的兩幅不完整的統計圖、以下結論不正確的是()
A、由這兩個統計圖可知喜歡“科普常識”的學生有90人
B、若該年級共有1200名學生,則由這兩個統計圖可估計喜愛“科普常識”的學生約有360人
C、由這兩個統計圖不能確定喜歡“小說”的人數
D、在扇形統計圖中,“漫畫”所在扇形的圓心角為72°
《6、4統計圖的選擇》同步練習
基礎鞏固
1、(題型一)用條形統計圖表示的數據可以轉換成()
A、扇形統計圖
B、折線統計圖
C、扇形統計圖和折線統計圖
D、既不能表示成扇形統計圖也不能表示成折線統計圖
2、(題型三)甲、乙兩人參加某體育項目訓練,為了便于研究,把最后5次的訓練成績分別用實線和虛線連接起來,如圖6—4—1,下面的結論錯誤的是()
A、乙的第2次成績與第5次成績相同
B、第3次測試,甲的成績與乙的成績相同
C、第4次測試,甲的成績比乙的成績多2分
D、在5次測試中,甲的成績都比乙的成績高
