高一數學教案集錦
在編寫教案時,應根據不同的學科和教學內容,選擇合適的教學方法和手段,制定明確的教學目標和教學計劃。下面是一些高一數學教案集錦免費閱讀下載,希望對大家寫高一數學教案集錦有用。
高一數學教案集錦篇1
一、教材分析
本節課選自《普通高中課程標準數學教科書—必修1》(人教A版)《1。2。1函數的概念》共3課時,本節課是第1課時。生活中的許多現象如物體運動,氣溫升降,投資理財等都可以用函數的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。函數是數學的重要的基礎概念之一,是高等數學重多學科的基礎概念和重要的研究對象。同時函數也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。
二、學生學習情況分析
函數是中學數學的主體內容,學生在中學階段對函數的認識分三個階段:
(一)初中從運動變化的角度來刻畫函數,初步認識正比例、反比例、一次和二次函數;
(二)高中用集合與對應的觀點來刻畫函數,研究函數的性質,學習典型的對、指、冪和三解函數;
(三)高中用導數工具研究函數的單調性和最值。
1、有利條件
現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。
初中用運動變化的觀點對函數進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規律的內容編排原則,函數概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數打下了一定的基礎。
2、不利條件
用集合與對應的觀點來定義函數,形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰,是本節課教學的一個不利條件。
三、教學目標分析
課標要求:通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域。
1、知識與能力目標:
⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質屬性;
⑵理解函數的三要素的含義及其相互關系;
⑶會求簡單函數的定義域和值域
2、過程與方法目標:
⑴通過豐富實例,使學生建立起函數概念的背景,體會函數是描述變量之間依賴關系的數學模型;
⑵在函數實例中,通過對關鍵詞的強調和引導使學發現它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。
3、情感、態度與價值觀目標:
感受生活中的數學,感悟事物之間聯系與變化的辯證唯物主義觀點。
四、教學重點、難點分析
1、教學重點:對函數概念的理解,用集合與對應的語言來刻畫函數;
重點依據:初中是從變量的角度來定義函數,高中是用集合與對應的語言來刻畫函數。二者反映的本質是一致的,即“函數是一種對應關系”。但是,初中定義并未完全揭示出函數概念的本質,對y?1這樣的函數用運動變化的觀點也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個數集之間的一種對應關系,按照這種觀點,使我們對函數概念有了更深一層的認識,也很容易說明y?1這函數表達式。因此,分析兩種函數概念的關系,讓學生融會貫通地理解函數的概念應為本節課的重點。
突出重點:重點的突出依賴于對函數概念本質屬性的把握,使學生通過表面的語言描述抓住概念的精髓。
2、教學難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解。
難點依據:數學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進行說明。
五、教法與學法分析
1、教法分析
本節課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發,關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數概念自然過度到函數的近代定我。
2、學法分析
在教學過程中我注意在教學中引導學生用模型法分析函數問題、通過自主學習法總結“區間”的知識。
高一數學教案集錦篇2
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發現問題,研究問題的創新意識和能力.
3.情感、態度與價值觀
通過集合的并集與交集運算法則的發現、完善,增強學生運用數學知識和數學思想認識客觀事物,發現客觀規律的興趣與能力,從而體會數學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區別與聯系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.
(四)教學過程
教學環節教學內容師生互動設計意圖
提出問題引入新知思考:觀察下列各組集合,聯想實數加法運算,探究集合能否進行類似“加法”運算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理數},
B={x|x是無理數},
C={x|x是實數}.
師:兩數存在大小關系,兩集合存在包含、相等關系;實數能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算.生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合.稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B={x|x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規律用數學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義.在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例例1設A={4,5,6,8},B={3,5,7,8},求A∪B.
例2設集合A={x|–1<x<2},集合b={x|1<x<3},求a∪b.< p="">
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.< p="">
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數軸,運用數形結合思想求解.
生:在數軸上畫出兩集合,然后合并所有區間.同時注意集合元素的互異性.學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老師要求學生對性質進行合理解釋.培養學生數學思維能力.
形成概念自學提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B={x|x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義.并總結交集的性質.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
師:適當闡述上述性質.
自學輔導,合作交流,探究交集運算.培養學生的自學能力,為終身發展培養基本素質.
應用舉例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新華中學開運動會,設
A={x|x是新華中學高一年級參加百米賽跑的同學},
B={x|x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系.學生上臺板演,老師點評、總結.
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合.所以,A∩B={x|x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2解:平面內直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為L1∩L2={點P};
(2)直線l1,l2平行可表示為
L1∩L2=;
(3)直線l1,l2重合可表示為
L1∩L2=L1=L2.提升學生的動手實踐能力.
歸納總結并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性質:①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.學生合作交流:回顧→反思→總理→小結
老師點評、闡述歸納知識、構建知識網絡
課后作業1.1第三課時習案學生獨立完成鞏固知識,提升能力,反思升華
備選例題
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
當a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
當a=–3時,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
當a=1時,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
當a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1<x<1},b={x|x<a},< p="">
(1)若A∩B=,求a的取值范圍;
(2)若A∪B={x|x<1},求a的取值范圍.
【解析】(1)如下圖所示:A={x|–1<x<1},b={x|x<a},且a∩b=,< p="">
∴數軸上點x=a在x=–1左側.
∴a≤–1.
(2)如右圖所示:A={x|–1<x<1},b={x|x<a}且a∪b={x|x<1},< p="">
∴數軸上點x=a在x=–1和x=1之間.
∴–1<a≤1.< p="">
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何實數時,A∩B與A∩C=同時成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.
由A∩B和A∩C=同時成立可知,3是方程x2–ax+a2–19=0的解.將3代入方程得a2–3a–10=0,解得a=5或a=–2.
當a=5時,A={x|x2–5x+6=0}={2,3},此時A∩C={2},與題設A∩C=相矛盾,故不適合.
當a=–2時,A={x|x2+2x–15=0}={3,5},此時A∩B與A∩C=,同時成立,∴滿足條件的實數a=–2.
例4設集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.
當x=3時,A={9,5,–4},B={–2,–2,9},B中元素違背了互異性,舍去.
當x=–3時,A={9,–7,–4},B={–8,4,9},A∩B={9}滿足題意,故A∪B={–7,–4,–8,4,9}.
當x=5時,A={25,9,–4},B={0,–4,9},此時A∩B={–4,9}與A∩B={9}矛盾,故舍去.
綜上所述,x=–3且A∪B={–8,–4,4,–7,9}.
高一數學教案集錦篇3
一、指導思想
以校本教研為基礎,以市第__屆學科帶頭人評選活動為契機,以學科基地為陣地,以網絡教研為形式,以提高課堂教學的有效性為突破口,以深入推進課程改革為重點,以促進學生全面發展和教師專業成長為目標,進一步全面深化教學改革,全面推進素質教育,全面提升學科品位,全面提高學科質量。
二、工作要點
1、扎實開展校本教研。通過“骨干引路”、“自我反思”、“同伴協助”、“聯片互動”、“專業扶持”等形式,在全體小學數學教師中廣泛、深入、持久、扎實、有效地開展新課程下的校本教研活動。通過研究,促進課改理念在課堂教學中的運用,促進課堂教學有效性的提升,促進全體教師的專業發展,尤其是促進農村小學教師的專業發展。
2、認真抓好教學視導。對全市小學的進行認真視導,通過聽課、評課、講座、問卷、教學常規檢查、組織教師和學生座談等形式,總結教學經驗,發現和解決教學問題,推動教學研究,提高教學質量。
3、建立學科教研基地。充分利用學科教研基地,廣泛、深入開展數學新課程領域的相關問題研究和探討,推動全市小學數學教學研究工作。本學年研究重點為:如何推進網上學習和網絡教研。
4、切實改革考試評價。要指導學校建立新的評價考試制度,大力改革考試內容和形式,使之符合新課程的新要求。要通過考試,發現學生的潛在能力與不足,判斷學生的發展方向,促進學生的知識與技能,過程與方法,情感態度價值觀和培養創新精神與實踐能力的全面和諧發展。
5、加強農村課改指導。本著求真務實的態度,研究在鄉村教師、教學設施條件較差的情況下,如何有效地促進課程教學改革,推進鄉村課程改革順利實施。
6、著力網研骨干培訓。在培訓對象上,要加強對各校網研骨干的培訓;在培訓內容上,要結合教學改革的需要組織培訓;在培訓的方式上,要多采用參與式、互動式等方式。要切實通過培訓,提高網研興趣和能力。
7、認真組織學科帶頭人評比活動。要嚴格按照市教育局和教科院要求,做好市第__屆小學數學學科帶頭人的評選工作。
8、抓好學科專業委員會建設。本學年,要召開學科專業委員會年會,并組織學科專業委員會開展主題研究論壇,深入研究教學改革的難點、熱點問題。
高一數學教案集錦篇4
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用__解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.
四、教學目標
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用__解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3.借助多媒體輔助教學,激發學習數學的興趣.
五、教學重點與難點:
教學重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學難點:
巧用圓錐曲線解題
高一數學教案集錦篇5
教學準備
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學工具
投影儀
教學過程
一、復習引入:
1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ
五,課堂小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
六、課后作業
P107習題2.4A組2、7題
課后小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
課后習題
作業
P107習題2.4A組2、7題
板書
略
高一數學教案集錦篇6
教學目標
1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法。
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念。
(2)能從數和形兩個角度熟悉單調性和奇偶性。
(3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度。
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數。減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數。偶函數的定義,函數奇偶性的判定方法,奇函數。偶函數的圖像。
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,二次函數。反比例函數圖象出發,回憶圖象的增減性,從這點感性熟悉出發,通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來。在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。
(2)函數單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律。函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
高一數學教案集錦篇7
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
高一數學教案集錦篇8
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數的認識,了解依賴關系中有的是函數關系,有的則不是函數關系.
2.培養廣泛聯想的能力和熱愛數學的態度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
教學難點:培養廣泛聯想的能力和熱愛數學的態度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發現哪些函數關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數關系。
2.構成函數關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。
3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數概念
1.初中關于函數的定義:
2.從集合的觀點出發,函數定義:
給定兩個非空數集A和B,如果按照某個對應關系f,對于A中的任何一個數x,在集合B中都存在確定的數f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數,記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數的定義域,集合{f(x)︱x∈A}叫作函數的值域。習慣上我們稱y是x的函數。
定義域,值域,對應法則
4.函數值
當x=a時,我們用f(a)表示函數y=f(x)的函數值。
高一數學教案集錦篇9
一、三維目標:
知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。
過程與方法:通過設置問題情境培養學生判斷、推斷的能力。
情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操.通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的思維品質。
二、學習重、難點:
重點:函數的奇偶性的概念。
難點:函數奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2.分別畫出函數f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
高一數學教案集錦篇10
一、教材分析
1、教材的地位和作用
一元二次方程是中學教學的主要內容,在初中代數中占有重要的地位,在一元二次方程的前面,學生學了實數與代數式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內容都是學習一元二次方程的基礎,通過一元二次方程的學習,就可以對上述內容加以鞏固,一元二次方程也是以后學習(指數方式,對數方程,三角方程以及不等式,函數,二次曲線等內容)的基礎,此外,學習一元二次方程對其他學科也有重要的意義。
2、教學目標及確立目標的依據
九年義務教育大綱對這部分的要求是:“使學生了解一元二次方程的概念”,依據教學大綱的要求及教材的內容,針對學生的理解和接受知識的實際情況,以提高學生的素質為主要目的而制定如下教學目標。
知識目標:使學生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標:通過一元二次方程概念的教學,培養學生善于觀察,發現,探索,歸納問題的能力,培養學生創造性思維和邏輯推理的能力。
德育目標:培養學生把感性認識上升到理性認識的辯證唯物主義的觀點。
3、重點,難點及確定重難點的依據
“一元二次方程”有著承上啟下的作用,在今后的學習中有廣泛的應用,因此本節課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數的)化成一般形式是本節課的難點。
二、教材處理
在教學中,我發現有的學生對概念背得很熟,但在準確和熟練應用方面較差,缺乏應變能力,針對學生中存在的這些問題,本節課突出對教學概念形成過程的教學,采用探索發現的方法研究概念,并引導學生進行創造性學習。
三、教學方法和學法
教學中,我運用啟發引導的方法讓學生從一元一次方程入手,類比發現并歸納出一元二次方程的概念,啟發學生發現規律,并總結規律,最后達到問題解決。
四、教學手段
采用投影儀
五、教學程序
1、新課導入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
(2)列方程解應用題的方法,步驟?(并引例打基礎)
課本引例(如圖)由教師提出并分析其中的數量關系。(用實際問題引出一元二次方程,可以幫助學生認識到一元二次方程是來源于客觀需要的)
設出求知數,列出代數式,并根據等量關系列出方程
高一數學教案集錦篇11
課題:
人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》
教材分析:
本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。
學情分析:
在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。
教學目標:
(一)教學知識點:
1.對數的概念。
2.對數式與指數式的互化。
(二)能力目標:
1.理解對數的概念。
2.能夠進行對數式與指數式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯系與相互轉化,
2.用聯系的觀點看問題。
教學重點與難點:
重點是對數定義,難點是對數概念的理解。
高一數學教案集錦篇12
一、目的要求
結合集合的圖形表示,理解交集與并集的概念。
二、內容分析
1.這小節繼續研究集合的運算,即集合的交、并及其性質。
2.本節課的重點是交集與并集的概念,難點是弄清交集與并集的概念,符號之間的區別與聯系。
三、教學過程
復習提問:
1.說出A的意義。
2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,
A=_________,B=__________。
(A={0,2,4},B={0,2,3,5})
新課講解:
1.觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關系?
2.定義:
(1)交集:A∩B={x∈A,且x∈B}。
(2)并集:A∪B={x∈A,且x∈B}。
3.講解教科書1.3節例1-例5。
組織討論:
觀察下面表示兩個集合A與B之間關系的5個圖,根據這些圖分別討論A∩B與A∪B。
(2)中A∩B=φ。
(3)中A∩B=B,A∪B=A。
(4)中A∩B=A,A∪B=B。
(5)中A∩B=A∪B=A=B。
課堂練習:
教科書1.3節第一個練習第1~5題。
拓廣引申:
在教科書的例3中,由A={3,5,6,8},B={4,5,7,8},得
A∪B={3,5,6,8}∪{4,5,7,8}
={3,4,5,6,7,8}
我們研究一下上面三個集合中的元素的個數問題。我們把有限集合A的元素個數記作card(A)=4,card(B)=4,card(A∪B)=6.
顯然,
card(A∪B)≠card(A)+card(B)
這是因為集合中的元素是沒有重復現象的,在兩個集合的公共元素只能出現一次。那么,怎樣求card(A∪B)呢?不難看出,要扣除兩個集合的公共元素的個數,即card(A∩B)。在上例中,card(A∩B)=2。
一般地,對任意兩個有限集合A,B,有
card(A∪B)=card(A)+card(B)-card(A∩B)。
四、布置作業
1.教科書習題1.3第1~5題。
2.選作:設集合A={x|-4≤x<2},B={-1<x≤3},c={}。< p="">
求A∩B∩C,A∪B∩C。
(A∩B∩C={-1<x≤0},a∪b∩c=r)< p="">
高一數學教案集錦篇13
一、教學目標
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:觀察、動手實踐、討論、類比。
四、教學過程
(一)創設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
三視圖的畫法規則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本P15練習1、2;P20習題1.2[A組]2。
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)布置作業
課本P20習題1.2[A組]1。
高一數學教案集錦篇14
一、教學目標:
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質及相關知識的綜合應用。
三、教學過程:
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數學建模的思想,切實培養分析和解決問題的能力。
高一數學教案集錦篇15
教學目標
1.通過教學使學生理解的概念,推導并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.
3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.
教學重點,難點
重點、難點是的定義的歸納及通項公式的推導.
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)
(板書)
1.的定義(板書)
根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.
請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:
2.對定義的認識(板書)
(1)的首項不為0;
(2)的每一項都不為0,即 ;
問題:一個數列各項均不為0是這個數列為的什么條件?
(3)公比不為0.
用數學式子表示的定義.
是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?
式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.的通項公式(板書)
問題:用 和 表示第 項 .
①不完全歸納法
②疊乘法
,… , ,這 個式子相乘得 ,所以 .
(板書)(1)的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
(板書)(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).
這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.
三、小結
1.本節課研究了的概念,得到了通項公式;
2.注意在研究內容與方法上要與等差數列相類比;
3.用方程的思想認識通項公式,并加以應用.
四、作業 (略)
五、板書設計
1.等比數列的定義
2.對定義的認識
3.等比數列的通項公式
(1)公式
(2)對公式的認識
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個厚度超過了世界的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).
