高一數學的教案
教案是教師為每節課制定的教學方案,其中包括每節課的重點、難點、教學內容、教學方法和教學目標等內容。想知道如何寫出優秀的高一數學的教案嗎?這里為大家分享高一數學的教案,快來學習吧!
高一數學的教案篇1
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1.說出下列圓的方程
⑴圓心(3,-2)半徑為5
⑵圓心(0,3)半徑為3
2.指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3.判斷3x-4y-10=0和x2+y2=4的位置關系
4.圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)
練習:
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業P811,2,3,4
高一數學的教案篇2
學習重點:了解弧度制,并能進行弧度與角度的換算
學習難點:弧度的概念及其與角度的關系。
學習目標
①了解弧度制,能進行弧度與角度的換算。
②認識弧長公式,能進行簡單應用。對弧長公式只要求了解,會進行簡單應用,不必在應用方面加深。
③了解角的集合與實數集建立了一一對應關系,培養學生學會用函數的觀點分析、解決問題。
教學過程
一、自主學習
1、長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。這種度量角的單位制稱為。
2、正角的弧度數是數,負角的弧度數是數,零角的弧度數是。
3、角的弧度數的絕對值。(為弧長,為半徑)
4:完成特殊角的度數與弧度數的對應表。
角度030456090120
弧度
角度135150180210225240
弧度
角度270300315330360
弧度
5、扇形面積公式:。
二、師生互動
例1把化成弧度。
變式:把化成度。
小結:在具體運算時,弧度二字和單位符號rad可省略,如:3表示3rad,sin表示rad角的正弦。
例2用弧度制表示:
(1)終邊在軸上的角的集合;
(2)終邊在軸上的角的集合。
變式:終邊在坐標軸上的角的集合。
例3、知扇形的周長為8,圓心角為2rad,,求該扇形的面積。
三、鞏固練習
1、若=—3,則角的終邊在()。
A、第一象限B、第二象限
C、第三象限D、第四象限
2、半徑為2的圓的圓心角所對弧長為6,則其圓心角為。
四、課后反思
五、課后鞏固練習
1、用弧度制表示終邊在下列位置的角的集合:
(1)直線y=x;(2)第二象限。
2、圓弧長度等于截其圓的內接正三角形邊長,求其圓心角的弧度數,并化為度表示。
高一數學的教案篇3
一、指導思想
以校本教研為基礎,以市第__屆學科帶頭人評選活動為契機,以學科基地為陣地,以網絡教研為形式,以提高課堂教學的有效性為突破口,以深入推進課程改革為重點,以促進學生全面發展和教師專業成長為目標,進一步全面深化教學改革,全面推進素質教育,全面提升學科品位,全面提高學科質量。
二、工作要點
1、扎實開展校本教研。通過“骨干引路”、“自我反思”、“同伴協助”、“聯片互動”、“專業扶持”等形式,在全體小學數學教師中廣泛、深入、持久、扎實、有效地開展新課程下的校本教研活動。通過研究,促進課改理念在課堂教學中的運用,促進課堂教學有效性的提升,促進全體教師的專業發展,尤其是促進農村小學教師的專業發展。
2、認真抓好教學視導。對全市小學的進行認真視導,通過聽課、評課、講座、問卷、教學常規檢查、組織教師和學生座談等形式,總結教學經驗,發現和解決教學問題,推動教學研究,提高教學質量。
3、建立學科教研基地。充分利用學科教研基地,廣泛、深入開展數學新課程領域的相關問題研究和探討,推動全市小學數學教學研究工作。本學年研究重點為:如何推進網上學習和網絡教研。
4、切實改革考試評價。要指導學校建立新的評價考試制度,大力改革考試內容和形式,使之符合新課程的新要求。要通過考試,發現學生的潛在能力與不足,判斷學生的發展方向,促進學生的知識與技能,過程與方法,情感態度價值觀和培養創新精神與實踐能力的全面和諧發展。
5、加強農村課改指導。本著求真務實的態度,研究在鄉村教師、教學設施條件較差的情況下,如何有效地促進課程教學改革,推進鄉村課程改革順利實施。
6、著力網研骨干培訓。在培訓對象上,要加強對各校網研骨干的培訓;在培訓內容上,要結合教學改革的需要組織培訓;在培訓的方式上,要多采用參與式、互動式等方式。要切實通過培訓,提高網研興趣和能力。
7、認真組織學科帶頭人評比活動。要嚴格按照市教育局和教科院要求,做好市第__屆小學數學學科帶頭人的評選工作。
8、抓好學科專業委員會建設。本學年,要召開學科專業委員會年會,并組織學科專業委員會開展主題研究論壇,深入研究教學改革的難點、熱點問題。
高一數學的教案篇4
高中數學第一冊(上)1.1集合(一)教學案例教學目標:1、理解集合、集合的元素的概念;2、了解集合的元素的三個特性;3、記憶常用數集的表示;4、會判斷元素與集合的關系,
集合(一)教學案例。教學重點:1、集合的概念;2、集合的元素的三個特征性質教學難點:1、集合的元素的三個特性;2、數集與數集的關系課前準備:1、教具準備:多媒體制作數學家康托介紹,包括頭像、生平、對數學發展所作的貢獻;本節課所需的例題、圖形等。2、布置學生預習1.1集合.教學設計:一、[創設情境]多媒體展示激發興趣:為科學而瘋的人——康托托康(Contor,Georg)(1845-1918),俄羅斯—德國數學家、19世紀數學偉大成就之一—集合論的創立人。康托生於俄國聖彼得堡,父母親是丹__人,父親出生於丹__首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼對數學有濃厚興趣。23歲獲博士學位,以后一直從事數學教學與研究。他所創立的集合論已被公認為全部數學的基礎。1874年康托的有關無窮的概念,震撼了知識界。康托憑借古代與中世紀哲學著作中關于無限的思想而導出了關于數的本質新的思想模式,建立了處理數學中的無限的基本技巧,從而極大地推動了分析與邏輯的發展。他研究數論和用三角函數地表示函數等問題,發現了驚人的結果:證明有理數是可列的,而全體實數是不可列的。由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為“悖論”),許多大數學家唯恐陷進去而采取退避三舍的態度。在1874—1876年期間,不到30歲的康托向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都“一樣多”,后來幾年,康托對這類“無窮集合”問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托的集合論是一種“疾病”,康托的概念是“霧中之霧”,甚至說康托是“瘋子”.來自數學__們的巨大精神壓力終于摧垮了康托,使他心力交瘁,患了精神__癥,被送進精神病醫院.他在集合論方面許多非常出色的成果,都是在精神病發作的間歇時期獲得的.真金不怕火煉,康托的思想終于大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托的工作“可能是這個代所能夸耀的最巨大的工作。”可是這時康托仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托在一家精神病院去世。今天,我們將學習高中數學第一章集合與簡易邏輯的1.1集合(一),讓我們回顧一下初中涉及到集合的有關知識。二、[復習舊知識]復習提問:1.在初中,我們學過哪些集合?實數集、二元一次方程的解集、不等式(組)的解集、點的集合等。2.在初中,我們用集合描述過什么?角平分線、線段的垂直平分線、圓、圓的內部、圓的外部等。
實數有理數無理數整數分數正無理數負無理數正分數負分數負整數自然數正整數零3.實數的分類3、實數的分類:
實數正實數負實數零
4、以下由學生完成:(1)、把下列各數填入相應的圈內
0、、2.5、、、-6、、8%、19
整數集合分數集合無理數集合
(2).把下列各數填入相應的大括號內1、-10、、、-2、3.6、、—0.1、8、負有理數集合:{}
整數集合:{}
正實數集:{}
無理數集:{}
3.解不等式組(1)2x-3〈5
4.絕對值小于3的整數是—————————————————三、[學習互動]1、觀察下列對象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)與一個角的兩邊距離相等的點;(4)滿足x-3>2的全體實數;(5)本班全體男生;(6)我國古代四大發明;(7)2007年本省高考考試科目;(8)2008年奧運會的球類項目,
《集合(一)教學案例》通過學生觀察以上對象后,教師提問:[集合的概念](1)集合是什么?某些指定的對象集在一起就成為一個集合,簡稱集。(2)什么是集合的元素?集合中的每個對象叫做這個集合的元素。(3)集合、集合的元素怎樣表示?一般用大括號表示集合且常用大寫字母表示;集合中的元素用小寫字母表示。(4)集合中的元素與集合的關系a是集合A的元素,稱a屬于A,記作a∈A;a不是集合A的元素,稱a不屬于A,記作aA。2、探討下列問題(1){1,2,2,3}是含有1個1、2個2、1個3的集合嗎?(2)的科學家能構成一個集合嗎?(3){a,b,c,d}與{b,c,d,a}是否表同一個集合?通過師生共同探討得出下面結論:通過師生共同探討得出結論:[集合中的元素的性質]確定性:集合中的元素必須是確定的。集合的元素的特點互異性:集合中的元素必須是互異的。無序性:集合中的元素是無先后順序的。組成集合的元素可以是:數、圖、人、事物等。[常用數集的表示](1)自然數集:用N表示(2)正整數集:用N﹡或N+表示(3)整數集:用Z表示(4)有理數集:用Q表示(5)實數集:用R表示(正實數集用R__或R+表示)四、[四、[互動參與]例1下面的各組對象能否構成集合是()(A)所有的好人(B)小于2004的實數(C)和2004非常接近的數(D)方程x2-3x+2=0的根例2用符號填空(1)3.14Q(2)πQ(3)0N+(4)0N
32(5)(-2)0N__(6)Q
3232(7)Z(8)—R
五、[分層議練]1、選擇題(1)下列不能形成集合的是()A、所有三角形B、《高一數學》中的所有難題C、大于π的整數D、所以的無理數2、判斷正誤(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,則xN()(3)若xQ,則xR()(4)若xN,則xN+()
常用數集屬于a∈AN、N__(或N+)、Z、Q、R。集合集合的概念元素與集合的關系集合中元素的性質確定性互異性無序性不屬于aA
本節課設計的目的:通過創設情境激發學生的學習興趣,課前預習培養學生的自學能力;多媒體輔助教學提高課堂效益,使教學呈現方式多樣化;探索現代教學手段與高中數學教學的整合。
高一數學的教案篇5
新學期開始了,本學期我擔任高一(1)(2)兩個班的數學教學工作,從學生的入學成績上看,兩班學生的數學基礎很差,所以本學期的教學任務非常艱巨,但我仍有信心迎接這個新挑戰。為了能更出色地完成教學任務,特制定計劃如下:
一、本學期教材分析,學生現狀分析
本學期教學內容是華師大版七年級上教材,內容與現實生活聯系非常密切,知識的綜合性也較強,教材為學生動手操作,歸納猜想提供了可能。觀察、思考、實驗、想一想、試一試、做一做等,給學生留有思考的`空間,讓學生能更好地自主學習。因此對每一章的教學都要體現師生交往、互動、共同發展的過程。要求老師成為學生數學學習的組織者和引導者,從學生的生活經驗和已有的知識背景出發,在活動中激發學生的學習潛能,促使學生在自主探索與合作交流的過程中真正理解和掌握基本數學知識、技能、思想、方法,提高解決問題的能力。開學第一周我對學生的觀察和了解中發現少部分學生基礎還可以,而大部分學生基礎和能力比較差,甚至加減乘除運算都不過關,更不用提解決實際問題了。所以一定要想方設法,鼓勵他們增強信心,改變現狀。在扎實基礎上提高他們解題的基本技能和技巧。
二、確立本學期的教學目標及實施目標的具體做法。
本學期的教學目標是五章內容,力求學生掌握基礎的同時提高他們的動手操的能力,概括的能力,類比猜想的能力和自主學習的能力。在初中的數學教學實踐中,常常發現相當一部分學生一開始不適應中學教師的教法,出現消化不良的癥狀,究其原因,就學生方面主要有三點:一是學習態度不夠端正;二是智能上存在差異;三是學習方法不科學。我以為施教之功,貴在引導,重在轉化,妙在開竅。因此為防止過早出現兩極分化,我準備具體從以下幾方面入手:
(一)掌握學生心理特征,激發他們學習數學的積極性。
學生由小學進入中學,心理上發生了較大的變化,開始要求“獨立自主”,但學生環境的更換并不等于他們已經具備了中學生的諸多能力。因此對學習道路上的困難估計不足。鑒于這些心理特征,教師必須十分重視激發學生的求知欲,有目的地時時地向學生介紹數學在日常生活中的應用,還要想辦法讓學生親身體驗生活離開數學知識將無法進行。從而激發他們學習數學知識的直接興趣,數學第一章內容的正確把握能較好地做到這些。同時在言行上,教師要切忌傷害學生的自尊心。
(二)努力提高課堂45分鐘效率
(1)在教師這方面,首先做到要通讀教材,駕奴教材,認真備課,認真備學生,認真備教法,對所講知識的每一環節的過渡都要精心設計。給學生出示的問題也要有層次,有梯度,哪些是獨立完成的,哪些是小組合作完成的,知識的達標程度教師更要掌握。同時作業也要分層次進行,使優生吃飽,差生吃好。
(2)重視學生能力的培養
七年級的數學是培養學
生運算能力,發展思維能力和綜合運用知識解決實際問題的能力,從而培養學生的創新意識。根據當前素質教育和新課改的的精神,在教學中我著重對學生進行上述幾方面能力的培養。充分發揮學生的主體作用,盡可能地把學生的潛能全部挖掘出來。
(三)加強對學生學法指導
進入中學,有些學生縱然很努力,成績依舊上不去,這說明中學階段學習方法問題已成為突出問題,這就要求學生必須掌握知識的內存規律,不僅要知其然,還要知其所以然,以逐步提高分析、判斷、綜合、歸納的解題能力,我要求學生養成先復習,后做作業的好習慣。課后注意及時復習鞏固以及經常復習鞏固,能使學過的知識達到永久記憶,遺忘緩慢。
三、教學研究計劃
課堂教學與數學改革是相鋪相成的,做好教學研究能更好地為課堂教學服務。本學期將積極參加學校和備課組的各項教研活動,撰寫“教學隨筆”和“教學反思”。本人決定在第十一周開一堂公開課,與學校同組的老師共同探討教學。
四、繼續教育計劃:
繼續教育是提高教師基本技能的重要途徑。本學期我積極參與校內外組織的各項繼續教育,努力提升教育教學水平。
1、通過網絡繼續教育培訓,學習新教育理念,不斷完善教育教學方式。
2、閱讀有關新課程的書籍,做好讀書筆記。
總之,本學期的教學工作任務還有很多,需要在今后的實際工作中進一步補充和完善。
高一數學的教案篇6
一、教學目標
1.掌握二次根式的性質
2.能夠利用二次根式的性質化簡二次根式
3.通過本節的學習滲透分類討論的數學思想和方法
二、教學設計
對比、歸納、總結
三、重點和難點
1.重點:理解并掌握二次根式的性質
2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
四、課時安排
1課時
五、教B具學具準備
投影儀、膠片、多媒體
六、師生互動活動設計
復習對比,歸納整理,應用提高,以學生活動為主
高一數學的教案篇7
教學目標:
(1) 了解集合、元素的概念,體會集合中元素的三個特征;
(2) 理解元素與集合的"屬于"和"不屬于"關系;
(3) 掌握常用數集及其記法;
教學重點:掌握集合的基本概念;
教學難點:元素與集合的關系;
教學過程:
一、引入課題
軍訓前學校通知:8月15日8點,高一年級在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念--集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內容
二、新課教學
(一)集合的有關概念
1. 集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們
能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,我們把研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3. 思考1:判斷以下元素的全體是否組成集合,并說明理由:
(1) 大于3小于11的偶數;
(2) 我國的小河流;
(3) 非負奇數;
(4) 方程的解;
(5) 某校2021級新生;(6) 血壓很高的人;
(7) 的數學家;
(8) 平面直角坐標系內所有第三象限的點
(9) 全班成績好的學生。
對學生的解答予以討論、點評,進而講解下面的問題。
4. 關于集合的元素的特征
(1)確定性:設A是一個給定的集合,_是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。
(3)無序性:給定一個集合與集合里面元素的順序無關。
(4)集合相等:構成兩個集合的元素完全一樣。
5. 元素與集合的關系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作:a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作:aA
例如,我們A表示"1~20以內的所有質數"組成的集合,則有3∈A
4A,等等。
6.集合與元素的字母表示: 集合通常用大寫的拉丁字母A,B,C...表示,集合的元素用小寫的拉丁字母a,b,c,...表示。
7.常用的數集及記法:
非負整數集(或自然數集),記作N;
正整數集,記作N_或N+;
整數集,記作Z;
有理數集,記作Q;
實數集,記作R;
(二)例題講解:
例1.用"∈"或""符號填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設A為所有亞洲國家組成的集合,則中國 A,美國 A,印度 A,英國 A。
例2.已知集合P的元素為, 若3∈P且-1P,求實數m的值。
(三)課堂練習:
課本P5練習1;
歸納小結:
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了常用集合及其記法。
作業布置:
1.習題1.1,第1- 2題;
2.預習集合的表示方法。
高一數學的教案篇8
一、教材分析
1.教學內容
本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2.教材的地位和作用
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念.
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程.
4.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.
二、目標分析
(一)知識目標:
1.知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。
2.能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。
3.情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
(二)過程與方法
培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1.教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2.學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。
四、過程分析
本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
(二)函數單調性的定義引入
1.幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:通過學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。通過學生已學過的一次y=2x+4,的圖象的動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1)
注意:(1)函數的單調性也叫函數的增減性;
(2)注意區間上所取兩點x1,x2的任意性;
(3)函數的單調性是對某個區間而言的,它是一個局部概念。
讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。
設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。
(四)例題分析
在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。
2.例2.證明函數在區間(-∞,+∞)上是減函數。
在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。
變式一:函數f(x)=-3x+b在R上是減函數嗎?為什么?
變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
錯誤:實質上并沒有證明,而是使用了所要證明的結論
例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。
(五)鞏固與探究
1.教材p36練習2,3
2.探究:二次函數的單調性有什么規律?
(幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。
設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。
通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。
(六)回顧總結
通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。
設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。
(七)課外作業
1.教材p43習題1.3A組1(單調區間),2(證明單調性);
2.判斷并證明函數在上的單調性。
3.數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。
設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。
(七)板書設計(見ppt)
五、評價分析
有效的概念教學是建立在學生已有知識結構基礎上,因此在教學設計過程中注意了:第一.教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發展區”;第三.強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。
本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。
高一數學的教案篇9
一、教材
《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。
二、學情
學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。
(二)過程與方法目標
經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態度價值觀目標
激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關系。
(二)難點
體會用解析法解決問題的數學思想。
五、教學方法
根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。
六、教學過程
(一)導入新課
教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數
即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數解時,直線l與圓C相交;
當方程組有一組實數解時,直線l與圓C相切;
當方程組沒有實數解時,直線l與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。
(五)小結作業
在小結環節,我會以口頭提問的方式:
(1)這節課學習的主要內容是什么?
(2)在數學問題的解決過程中運用了哪些數學思想?
設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。
作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。
七、板書設計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。
高一數學的教案篇10
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節課所學知識進行回顧。
布置作業。
高一數學的教案篇11
一、教學目標
1.掌握商的算術平方根的性質,能利用性質進行二次根式的化簡與運算;
2.會進行簡單的二次根式的除法運算;
3.使學生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4.培養學生利用二次根式的除法公式進行化簡與計算的能力;
5.通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學生的&39;歸納總結能力;
6.通過分母有理化的教學,滲透數學的簡潔性.
二、教學重點和難點
1.重點:會利用商的算術平方根的性質進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學生掌握二次根式的除法采用分母有理化的方法進行.
2.難點:二次根式的除法與商的算術平方根的關系及應用.
三、教學方法
從特殊到一般總結歸納的方法以及類比的方法,在學習了二次根式乘法的基礎上本小節
內容可引導學生自學,進行總結對比.
高一數學的教案篇12
一、教材分析
1、教材的地位和作用
(1)本節課主要對函數單調性的學習;
(2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用
2、教材重、難點
重點:函數單調性的定義
難點:函數單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)
二、教學目標
知識目標:
(1)函數單調性的定義
(2)函數單調性的證明
能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:培養學生勇于探索的精神和善于合作的意識
(這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。
(前三部分用時控制在三分鐘以內,可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創設問題,探索新知
緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。
讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。
讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。
3、例題講解,學以致用
例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。
高一數學的教案篇13
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
高一數學的教案篇14
一、教學目標
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:觀察、動手實踐、討論、類比。
四、教學過程
(一)創設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
三視圖的畫法規則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本P15練習1、2;P20習題1.2[A組]2。
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)布置作業
課本P20習題1.2[A組]1。
高一數學的教案篇15
教學目標
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。
教學重難點
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。
教學過程
等比數列性質請同學們類比得出。
【方法規律】
1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數學思想和方法。
2、判斷一個數列是等差數列或等比數列,常用的方法使用定義。特別地,在判斷三個實數a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)
3、在求等差數列前n項和的(小)值時,常用函數的思想和方法加以解決。
【示范舉例】
例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為。
(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=。
例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數。
例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項。
