高一數學課件教案
好的教案應該包括合理的教學過程,包括導入新課、講授新課、鞏固練習、課堂小結、布置作業等環節。高一數學課件教案怎么寫,這里給大家分享高一數學課件教案,供大家參考。
高一數學課件教案篇1
一、教材分析
1.教學內容
本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2.教材的地位和作用
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念.
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程.
4.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.
二、目標分析
(一)知識目標:
1.知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。
2.能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。
3.情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
(二)過程與方法
培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1.教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2.學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。
四、過程分析
本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
(二)函數單調性的定義引入
1.幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:通過學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。通過學生已學過的一次y=2x+4,的圖象的動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1)
注意:(1)函數的單調性也叫函數的增減性;
(2)注意區間上所取兩點x1,x2的任意性;
(3)函數的單調性是對某個區間而言的,它是一個局部概念。
讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。
設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。
(四)例題分析
在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。
2.例2.證明函數在區間(-∞,+∞)上是減函數。
在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。
變式一:函數f(x)=-3x+b在R上是減函數嗎?為什么?
變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
錯誤:實質上并沒有證明,而是使用了所要證明的結論
例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。
(五)鞏固與探究
1.教材p36練習2,3
2.探究:二次函數的單調性有什么規律?
(幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。
設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。
通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。
(六)回顧總結
通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。
設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。
(七)課外作業
1.教材p43習題1.3A組1(單調區間),2(證明單調性);
2.判斷并證明函數在上的單調性。
3.數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。
設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。
(七)板書設計(見ppt)
五、評價分析
有效的概念教學是建立在學生已有知識結構基礎上,因此在教學設計過程中注意了:第一.教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發展區”;第三.強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。
本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。
高一數學課件教案篇2
教學目標:
(1) 了解集合、元素的概念,體會集合中元素的三個特征;
(2) 理解元素與集合的"屬于"和"不屬于"關系;
(3) 掌握常用數集及其記法;
教學重點:掌握集合的基本概念;
教學難點:元素與集合的關系;
教學過程:
一、引入課題
軍訓前學校通知:8月15日8點,高一年級在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念--集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內容
二、新課教學
(一)集合的有關概念
1. 集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們
能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,我們把研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3. 思考1:判斷以下元素的全體是否組成集合,并說明理由:
(1) 大于3小于11的偶數;
(2) 我國的小河流;
(3) 非負奇數;
(4) 方程的解;
(5) 某校2021級新生;(6) 血壓很高的人;
(7) 的數學家;
(8) 平面直角坐標系內所有第三象限的點
(9) 全班成績好的學生。
對學生的解答予以討論、點評,進而講解下面的問題。
4. 關于集合的元素的特征
(1)確定性:設A是一個給定的集合,_是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。
(3)無序性:給定一個集合與集合里面元素的順序無關。
(4)集合相等:構成兩個集合的元素完全一樣。
5. 元素與集合的關系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作:a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作:aA
例如,我們A表示"1~20以內的所有質數"組成的集合,則有3∈A
4A,等等。
6.集合與元素的字母表示: 集合通常用大寫的拉丁字母A,B,C...表示,集合的元素用小寫的拉丁字母a,b,c,...表示。
7.常用的數集及記法:
非負整數集(或自然數集),記作N;
正整數集,記作N_或N+;
整數集,記作Z;
有理數集,記作Q;
實數集,記作R;
(二)例題講解:
例1.用"∈"或""符號填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設A為所有亞洲國家組成的集合,則中國 A,美國 A,印度 A,英國 A。
例2.已知集合P的元素為, 若3∈P且-1P,求實數m的值。
(三)課堂練習:
課本P5練習1;
歸納小結:
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了常用集合及其記法。
作業布置:
1.習題1.1,第1- 2題;
2.預習集合的表示方法。
高一數學課件教案篇3
1.教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用.
2.設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標.
3.教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題.
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用.
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美.
4.重點難點
重點:任意角三角函數的定義.
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透.
5.學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念.在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構.
6.教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構.這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用.
7.學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標.
8.教學設計(過程)
一、引入
問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問題3:當角clip_image002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?
二、原有認知結構的改造和重構
問題4:當角clip_image002[1]是銳角時,clip_image004,線段OP的長度clip_image006這幾個量之間有何關系?
學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數
學生閱讀教材,并思考:
問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?
學生討論并回答
三、新概念的形成
問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?
學生回答,并閱讀教材,得到任意角三角函數的定義.并思考:
問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?
展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的
并類比函數的研究方法,得出任意角三角函數的定義域和值域。
四、概念的運用
1.基礎練習
①口算clip_image008的值.
②分別求clip_image010的值
小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值
ⅱ)誘導公式(一)
③若clip_image012,試寫出角clip_image002[2]的值。
④若clip_image015,不求值,試判斷clip_image017的符號
⑤若clip_image019,則clip_image021為第象限的角.
例1.已知角clip_image002[3]的終邊過點clip_image024,求clip_image026之值
若P點的坐標變為clip_image028,求clip_image030的值
小結:任意角三角函數的等價定義(終邊定義法)
例2.一物體A從點clip_image032出發,在單位圓上沿逆時針方向作勻速圓周運動,若經過的弧長為clip_image034,試用clip_image034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變為clip_image006[1],如何用clip_image034[2]來表示物體A所在位置的坐標?
小結:可以采用三角函數模型來刻畫圓周運動
五、拓展探究
問題8:當角clip_image002[4]的終邊繞頂點O作圓周運動時,角clip_image002[5]的終邊與單位圓的交點clip_image039的坐標clip_image041clip_image043與角clip_image002[6]之間還可以建立其它函數模型嗎?
思考:引入平面直角坐標系后,我們可以把圓周運動用數來刻畫,這是將“形”轉化成為“數”;角clip_image002[7]正弦值是一個數,你能借助平面直角坐標系和單位圓,用“形”來表示這個“數”嗎?角clip_image002[8]余弦值、正切值呢?
六、課堂小結
問題9:請你談談本節課的收獲有哪些?
七、課后作業
教材P21第6、7、8題
高一數學課件教案篇4
一、教材
首先談談我對教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數學必修2第三章3.1.2的內容,本節課的內容是兩條直線平行與垂直的判定的推導及其應用,學生對于直線平行和垂直的概念已經十分熟悉,并且在上節課學習了直線的傾斜角與斜率,為本節課的學習打下了基礎。
二、學情
教材是我們教學的工具,是載體。但我們的教學是要面向學生的,高中學生本身身心已經趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經非常成熟,能夠有自己獨立的思考,所以應該積極發揮這種優勢,讓學生獨立思考探索。
三、教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據其判定兩條直線的位置關系。
(二)過程與方法
在經歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態度價值觀
在猜想論證的過程中,體會數學的嚴謹性。
四、教學重難點
我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:兩條直線平行與垂直的判定。本節課的教學難點是:兩條直線平行與垂直的判定的推導。
五、教法和學法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用講授法、練習法、小組合作等教學方法。
六、教學過程
下面我將重點談談我對教學過程的設計。
(一)新課導入
首先是導入環節,那么我采用復習導入,回顧上節課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關系呢?
利用上節課所學的知識進行導入,很好的克服學生的畏難情緒。
(二)新知探索
接下來是教學中最重要的新知探索環節,我主要采用講解法、小組合作、啟發法等。
高一數學課件教案篇5
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節課所學知識進行回顧。
布置作業。
高一數學課件教案篇6
目標:
(1)使學生初步理解集合的概念,知道常用數集的概念及其記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
重點:集合的基本概念
教學過程:
1.引入
(1)章頭導言
(2)集合論與集合論的-----康托爾(有關介紹可引用附錄中的內容)
2.講授新課
閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)有關概念:
1、集合的概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合.
(3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……
2、元素與集合的關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
要注意“∈”的方向,不能把a∈A顛倒過來寫.
3、集合中元素的特性
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
(2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
注:應區分,0等符號的含義
5、常用數集及其表示方法
(1)非負整數集(自然數集):全體非負整數的集合.記作N
(2)正整數集:非負整數集內排除0的集.記作N_或N+
(3)整數集:全體整數的集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R
注:(1)自然數集包括數0.
(2)非負整數集內排除0的集.記作N_或N+,Q、Z、R等其它數集內排除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z_
課堂練習:教材第5頁練習A、B
小結:本節課我們了解集合論的發展,學習了集合的概念及有關性質
課后作業:第十頁習題1-1B第3題
高一數學課件教案篇7
第一節集合的含義與表示
學時:1學時
[學習引導]
一、自主學習
1.閱讀課本.
2.回答問題:
⑴本節內容有哪些概念和知識點?
⑵嘗試說出相關概念的含義?
3完成練習
4小結
二、方法指導
1、要結合例子理解集合的概念,能說出常用的數集的名稱和符號。
2、理解集合元素的特性,并會判斷元素與集合的關系
3、掌握集合的表示方法,并會正確運用它們表示一些簡單集合。
4、在學習中要特別注意理解空集的意義和記法
[思考引導]
一、提問題
1.集合中的元素有什么特點?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關系?如何用數學語言表述?
5集合和是否相同?
二、變題目
1.下列各組對象不能構成集合的是()
A.北京大學2008級新生
B.26個英文字母
C.著名的藝術家
D.2008年北京奧運會中所設定的比賽項目
2.下列語句:①0與表示同一個集合;
②由1,2,3組成的集合可表示為或;
③方程的解集可表示為;
④集合可以用列舉法表示。
其中正確的是()
A.①和④B.②和③
C.②D.以上語句都不對
[總結引導]
1.集合中元素的三特性:
2.集合、元素、及其相互關系的數學符號語言的表示和理解:
3.空集的含義:
[拓展引導]
1.課外作業:習題11第題;
2.若集合,求實數的值;
3.若集合只有一個元素,則實數的值為;若為空集,則的取值范圍是.
撰稿:程曉杰審稿:宋慶
高一數學課件教案篇8
一、指導思想
以校本教研為基礎,以市第__屆學科帶頭人評選活動為契機,以學科基地為陣地,以網絡教研為形式,以提高課堂教學的有效性為突破口,以深入推進課程改革為重點,以促進學生全面發展和教師專業成長為目標,進一步全面深化教學改革,全面推進素質教育,全面提升學科品位,全面提高學科質量。
二、工作要點
1、扎實開展校本教研。通過“骨干引路”、“自我反思”、“同伴協助”、“聯片互動”、“專業扶持”等形式,在全體小學數學教師中廣泛、深入、持久、扎實、有效地開展新課程下的校本教研活動。通過研究,促進課改理念在課堂教學中的運用,促進課堂教學有效性的提升,促進全體教師的專業發展,尤其是促進農村小學教師的專業發展。
2、認真抓好教學視導。對全市小學的進行認真視導,通過聽課、評課、講座、問卷、教學常規檢查、組織教師和學生座談等形式,總結教學經驗,發現和解決教學問題,推動教學研究,提高教學質量。
3、建立學科教研基地。充分利用學科教研基地,廣泛、深入開展數學新課程領域的相關問題研究和探討,推動全市小學數學教學研究工作。本學年研究重點為:如何推進網上學習和網絡教研。
4、切實改革考試評價。要指導學校建立新的評價考試制度,大力改革考試內容和形式,使之符合新課程的新要求。要通過考試,發現學生的潛在能力與不足,判斷學生的發展方向,促進學生的知識與技能,過程與方法,情感態度價值觀和培養創新精神與實踐能力的全面和諧發展。
5、加強農村課改指導。本著求真務實的態度,研究在鄉村教師、教學設施條件較差的情況下,如何有效地促進課程教學改革,推進鄉村課程改革順利實施。
6、著力網研骨干培訓。在培訓對象上,要加強對各校網研骨干的培訓;在培訓內容上,要結合教學改革的需要組織培訓;在培訓的方式上,要多采用參與式、互動式等方式。要切實通過培訓,提高網研興趣和能力。
7、認真組織學科帶頭人評比活動。要嚴格按照市教育局和教科院要求,做好市第__屆小學數學學科帶頭人的評選工作。
8、抓好學科專業委員會建設。本學年,要召開學科專業委員會年會,并組織學科專業委員會開展主題研究論壇,深入研究教學改革的難點、熱點問題。
高一數學課件教案篇9
各位,下午好:
今天我說課的課題是古詩《迢迢牽牛星》。接下來,我對本課題進行分析:
一、說教材的地位和作用
《迢迢牽牛星》是編排在粵教版全日制普通高級中學教科書語文必修1第四單元第四個課題《漢魏晉詩三首》中的其中一首。“在心為志,發言為詩”,“情動于中而形于言”。詩歌是詩人真情實感的詠唱,是心靈對現實的應答。《古詩十九首》映了時代的動蕩,社會的亂離《迢迢牽牛星》借牛郎織女的故事,寄托織女的相思之苦,形象地抒發了現實生活中男女情人咫尺天涯的哀怨,表達了渴望夫妻團圓的強烈愿望。通過學習本文,將使學生進一步學會詩歌鑒賞的方法,培養人文素養。在此之前,學生們已經學習了《詩經》兩首、《離騷(節選)》、《孔雀東南飛》,這為過渡到本課題的學習起到了很好的鋪墊作用。因此,學好本課為學好以后的詩歌可以打下牢固的理論基礎,而且它在整個教材也起到了承上啟下的作用。本課包含的一些重要的知識點和思想,為以后學生在學習理解類似的詩歌并為簡單地鑒賞詩歌打下堅實的基礎。
二、說教學目標
根據本教材的結構和內容分析,結合著高一年級學生他們的認知結構及其心理特征,我制定了以下的教學目標:
1.知識目標:了解《古詩十九首》相關知識,有節奏地朗讀詩歌并背誦全詩。
2.技能目標:會分析詩歌的情感,能簡單分析詩歌疊音詞作用和表達效果。
3.情感與價值觀目標:品味《迢迢牽牛星》詩中的愛情美,理解詩歌所表達出的渴望普天下夫妻團聚的愿望。
三、說教學的重難點
本著對高中語文新課程標準的理解,在吃透教材基礎上,我確定了以下教學重點和難點。
1.教學重點:分析詩歌中疊音詞作用和表達效果,掌握鑒賞此類詩歌的技巧。
2.教學難點:據學生的認知特點,牽牛織女星等天文知識、光年的定義的理解是教學的難點。
3.確立重點和難點的依據是:天文知識、光年較抽象,學生欠缺這方面的基礎知識。
為了講清教材的重難點,使學生能夠達到本課題設定的教學目標,我再從教法我學法上談談。
四、說教法
我們都知道語文是一門提高人文素養,培養人的鑒賞能力的重要學科。因此,在教學過程中,不僅要使學生“知其然”,還要使學生“知其所以然”。我們在以師生既為主體又為客體的原則下,展現獲取理論知識、解決實際問題的思維過程。
考慮到高一級學生的現狀,我主要采取朗讀法、講授法、讀寫結合法,心理學理論告訴我們:學生的學習情緒直接影響學習效果。因此我還采用多媒體為教學手段的情景教學方法,創設情境幫助學生理解詩歌,利用疊音詞串聯詩歌,充分調動學生積極主動地參與到教學活動中來,使他們在活動中得到認識和體驗。當然老師自身也是非常重要的教學資源。教師本人應該通過課堂教學感染和激勵學生,調動起學生參與活動的積極性,激發學生對解決實際問題的渴望,并且要培養學生以理論聯系實際的能力,從而達到的教學效果。基于本課題的特點,我主要采用了以下的教學方法:
1.朗讀法:“三分詩七分讀”。從教學過程來說,教學中將朗讀教學貫徹到課堂始終,教師示范朗讀,引導學生按要求聽讀,幫助學生深入體會課文的情感意蘊,學生通過反復的朗讀,加深對課文的理解,培養學生的語感。
2.講授法:教師通過口頭語言向學生傳授知識、培養能力、進行思想教育。按照徹啟發式教學原則,講授的內容突出本課的的重點、難點和關鍵,使學生隨著教師的講解或講述開動腦筋思考問題,講中有導,講中有練。使學生主體作用凸顯出來,把課堂進行得生動活潑,而不是注入式。
3.讀寫結合法:注重讀寫結合,在熟讀的基礎上,讓學生對教材后面的疊詞練習進行快速地思考,組織答案,我來總結這類題目的答題技巧和規律。這不僅有助于學生對詩歌疊音詞的理解,而且提高了學生的詩歌鑒賞能力。
五、說學法
根據本文篇幅簡短,又是淺顯的文言文的特點,要求學生課前必須進行預習,并利用課下注釋和工具書來疏通文意。讓學生從機械的“學答”向“學問”轉變,從“學會”向“會學”轉變,成為學習的真正的主人。在課堂上,通過朗讀和提問法去推動學生思考,進一步理解文章的內容,調動學生學習的積極性,讀出初步真實感受。這節課在指導學生的學習方法和培養學生的學習能力方面主要采取以下方法:思考評價法、分析歸納法、總結反思法。
最后我具體來談談這一堂課的教學過程。
六、說教學過程
在這節課的教學過程中,我注重突出重點,條理清晰,緊湊合理,各項活動的安排也注重互動、交流,限度的調動學生參與課堂的積極性、主動性。
1.導入新課:
提問學生是否知道中國古代四大愛情故事,從學生的回答情況中引出本節課的主題牛郎織女的故事。在此之后,請一位男生和一位女生起來講述他們所了解到的牛郎織女的愛情故事,總結學生的回答情況,并由我來詳細地向學生交代故事的起源、發展,最重要的是突出這樣一個常識讓傳說與課文有了緊密的切合點,牛郎和織女是因為王母娘娘的一根發簪化成的銀河而相隔兩地,不得相見,后來真情感動天地,遂允許二人七月七日相見。
2.示范朗讀:
教師朗讀全文,學生按要求在書中畫出容易讀錯的多音字詞。教師用語言鼓勵學生,請學生給老師挑刺(教師故意讀錯某個詞),歡迎學生與教師競爭。這樣既能使學生的注意力集中到聽讀上,同時又能激氣學生當堂背下詩歌的興趣和信心。
3.學生朗讀:
朗讀是詩歌教學中必不可少的手段,應反復進行。要引導學生采用輪讀、個讀、聽讀、小組讀等多形式朗讀,以讀帶動對課文的理解,使學生以讀為樂。
4.學生背誦
在經過反復的聽讀和朗讀之后,學生已經基本能粗略知道詩歌大意,在此基礎上,要求學生根據自己的情況即時背誦,教師根據學生的不同情況引導以詩歌的思想內容。
5.板書設計:
我比較注重直觀地、系統的板書設計,并及時地體現教材中的知識點,以便于學生能夠理解掌握。我的板書設計是:
6.布置作業。
我布置的課堂作業是:《一號》P110頁第三題
七、我為什么要這樣上課
1.對教材內容的處理。
根據新課程標準的要求、知識的跨度、學生的認知水平,我對教材內容的增有減。
2.教學策略的選用
(1)重點字詞如多音字讀音讓學生動手去查閱,自己作初步的記憶,教師扮演輔導者的角色。這樣有利于學生能力的提高,有利于學生對詩歌學習興趣的培養。通過對《古詩十九首》及《迢迢牽牛星》的文學常識和背景知識的介紹,激發學生了解古詩的興趣,有利于提高學生學習的積極性。
(2)讓學生鞏固重點知識并形成新的知識。通過布置作業,讓學生背誦課文,使他們進一步的理解文章,梳理思路,提高詩歌鑒賞閱讀的語感和鑒賞的思路。完成《一號》的習題,有利于學生對詩歌的深刻理解,對以后的古詩學習打下堅實的基礎。
八、結束語
各位領導、老師們,本節課我根據高一年級學生的心理特征及其認知規律,采用直觀教學和討論法的教學方法,以‘教師為主導,學生為主體’,教師的“導”立足于學生的“學”,以學法為重心,放手讓學生自主探索的學習,主動地參與到知識形成的整個思維過程,力求使學生在積極、愉快的課堂氣氛中提高自己的認識水平,從而達到預期的教學效果。我的說課完畢,謝謝!
高一數學課件教案篇10
今年,學校安排我擔任兩個住校班的數學教學任務,住校班的學生以農村孩子為主。我本人擔任了多年的初中數學教學工作,對教材非常熟悉。因此,本學期的初中數學教學計劃的重點,應放在學生管理和教法鉆研上。
一、指導思想
根據學校工作計劃,繼續以新課程標準為依據,貫徹教育教學法規,落實素質教育和自成教育。通過數學的學習,發展學生的邏輯思維能力,培養學生的合情推理能力;讓學生學到有用的數學,滲透終生數學教育思想;讓數學教育面向全體學生,人人學到必要的數學知識,并通過數學課的情感滲透培養學生自強成才的精神。
二、學情分析
住校班以農村孩子居多的班級。他們雖然大多樸實善良,但因為從小家長管不上,沒有養成好的學習習慣,絕大多數學生的成績較差。通過一年半的努力,本班數學成績有了長足的進步,學生無論從數學思維和數學能力上都得到了鍛煉和培養,數學知識掌握得較牢固;學習習慣上,學生的課前預習、課堂上記筆記的習慣已初步形成。在學習方法上,一題多解,多題一解,從不同的角度看問題等數學思想方法已在一些學生的頭腦中形成。但一些學生的舉一反三的能力還有待加強,數學知識上一些拔高的內容還很模糊,課堂上參與度不高,有時還需要教師提醒。學生課外自主拓展知識的能力幾乎沒有,認真對待每次作業,及時糾正作業中的錯誤的同學人數還不理想。
三、主要措施
1、認真做好教學工作。認真研讀新課程標準,鉆研新教材,根據新課程標準,挖掘整合教材,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。
2、激發學生的興趣,興趣是的老師。給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。
3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的構造。
4、引導學生積極歸納解題規律,引導學生一題多解,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。
7、開展分層教學,布置作業設置A、B、C三類,分層布置,分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發展。進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關。
高一數學課件教案篇11
一、教材
《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。
二、學情
學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。
(二)過程與方法目標
經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態度價值觀目標
激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關系。
(二)難點
體會用解析法解決問題的數學思想。
五、教學方法
根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。
六、教學過程
(一)導入新課
教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數
即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數解時,直線l與圓C相交;
當方程組有一組實數解時,直線l與圓C相切;
當方程組沒有實數解時,直線l與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。
(五)小結作業
在小結環節,我會以口頭提問的方式:
(1)這節課學習的主要內容是什么?
(2)在數學問題的解決過程中運用了哪些數學思想?
設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。
作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。
七、板書設計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。
高一數學課件教案篇12
一、教學目標
1.掌握商的算術平方根的性質,能利用性質進行二次根式的化簡與運算;
2.會進行簡單的二次根式的除法運算;
3.使學生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4.培養學生利用二次根式的除法公式進行化簡與計算的能力;
5.通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學生的&39;歸納總結能力;
6.通過分母有理化的教學,滲透數學的簡潔性.
二、教學重點和難點
1.重點:會利用商的算術平方根的性質進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學生掌握二次根式的除法采用分母有理化的方法進行.
2.難點:二次根式的除法與商的算術平方根的關系及應用.
三、教學方法
從特殊到一般總結歸納的方法以及類比的方法,在學習了二次根式乘法的基礎上本小節
內容可引導學生自學,進行總結對比.
高一數學課件教案篇13
教學準備
教學目標
知識目標
等差數列定義等差數列通項公式
能力目標
掌握等差
數列定義等差數列通項公式
情感目標
培養學生的觀察、推理、歸納能力
教學重難點
教學重點
等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察——發現
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1。判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
高一數學課件教案篇14
初中數學知識所復習的內容面廣量大,知識點多,要想在短暫的時間內全面復習初中所學的數學知識,形成基本技能,提高解題技巧、解題能力,并非易事。而且今年為了減輕學生的課業負擔,要求學校停止二課和晚自習,這樣更減少了復習是家時間。如何提高復習的效率和質量,成為了我們初三數學老師關心的問題。為此,通過我們三人的研究,制定了切實可行的復習計劃,能讓復習有條不紊地進行下去,起到事半功倍的效果。
第一輪以知識立意,突出“基礎性”,追求數學內容的本質理解,全面梳理知識,側重雙基(基礎知識、基本技能),所選素材難度以中檔以下為主,時間為2月中旬到4月中旬,約兩月時間;
應該注意的幾個問題:
(1)必須扎扎實實地夯實基礎。
(2)中考有些基礎題是課本上的原題或改造,必須深鉆教材,絕不能脫離課本。
(3)不搞題海戰術,精講精練,舉一反三、觸類旁通。
第二輪以能力立意,突出“發展性”,追求數學素養的全面提升,側重數學思想方法、數學基本活動經驗,適當加強綜合,所選題難度以中檔為主,時間為4月中旬至5月下旬,約一個月時間。應該注意的幾個問題:
(1)第二輪復習不再以節、章、單元為單位,而是以專題為單位。
(2)專題的選擇要準、安排時間要合理。
第三輪以狀態為立意,突出“綜合性”,追求數學水平的有效發揮,側重培養學生應試技能,時間約20天。
第三輪復習應該注意的幾個問題:
(1)模擬題必須要有模擬的特點。時間的安排,題量的多少,低、中、高檔題的比例,總體難度的控制等要切近中考題。
(2)模擬題的設計要有梯度,立足中考又要高于中考。
(3)批閱要及時,趁熱打鐵,切忌連考兩份。
(4)評分要狠。可得可不得的分不得,答案錯了的題盡量不得分,讓苛刻的評分教育學生,既然會就不要失分。
(5)歸納學生知識的遺漏點。為查漏補缺積累素材。
(6)選準要講的題,要少、要精、要有很強的針對性。
(7)留給學生一定的糾錯和消化時間。教師講過的內容,學生要整理下來;教師沒講的自己解錯的題要糾錯;與之相關的基礎知識要再記憶再鞏固。教師要充分利用這段時間,解決個別學生的個別問題。
(8)適當的“解放”學生,特別是在時間安排上。經過一段時間的考、考、考,幾乎所有的學生心身都會感到疲勞,如果把這種疲勞的狀態帶進中考考場,那肯定是個較差的結果。但要注意,解放不是放松,必須保證學生有個適度緊張的精神狀態。實踐證明,適度緊張是正常或者超常發揮的狀態。
高一數學課件教案篇15
教學目的:
(1)使學生初步理解集合的概念,知道常用數集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
內容分析:
1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明
教學過程:
一、復習引入:
1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合記作N,
(2)正整數集:非負整數集內排除0的集記作N_或N+
(3)整數集:全體整數的集合記作Z,
(4)有理數集:全體有理數的集合記作Q,
(5)實數集:全體實數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集記作N_或N+Q、Z、R等其它
數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z_
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,
或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__
4、由實數x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素(B)3個元素(C)4個元素(D)5個元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
(1)當x∈N時,x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
則x=x+0_=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整數,
∴=不一定屬于集合G
四、小結:本節課學習了以下內容:
1.集合的有關概念:(集合、元素、屬于、不屬于)
2.集合元素的性質:確定性,互異性,無序性
3.常用數集的定義及記法
五、課后作業:
六、板書設計(略)
七、課后記:
