教案模版初中數學
教案可以幫助教師有計劃地進行教學,從而避免課堂上的混亂和無效性。那要怎么寫教案模版初中數學呢?這里提供一些教案模版初中數學,希望對大家能有所幫助。
教案模版初中數學篇1
一、例題的意圖分析
例1(P83例2)讓學生養成利用勾股定理的逆定理解決實際問題的意識。
例2(補充)培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識。
二、課堂引入
創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法。
三、例習題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識。
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設未知數列方程,求出三角形的三邊長5、12、13;
⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形。
解略。
四、課堂練習
1。小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是。
2。如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點能否構成直角三角形?為什么?
3。如圖,在我國沿海有一艘不明國籍的輪船進入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向為北偏西40°,問:甲巡邏艇的航向
教案模版初中數學篇2
教學目標
1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;
2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;
3.通過對用字母表示數的講解,初步培養學生觀察和抽象思維的能力;
4.通過本節課的教學,使學生深刻體會從特殊到一般的的數學思想方法。
教學建議
1.知識結構:本小節先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優越性,進而引出代數式的概念。
2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:
(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優越性.
(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.
等都不是代數式.
3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規定,以簡明而不引起誤會為出發點。
如:說出代數式7(a-3)的意義。
分析7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數式的注意事項:
(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.
如3×a,應寫作3.a或寫作3a,a×b應寫作3.a或寫作ab.帶分數與字母相乘,應把帶分數化成假分數,
FormatImgID_0
.數字與數字相乘一般仍用“×”號.
(2)代數式中有除法運算時,一般按照分數的寫法來寫.
(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.
5.對本節例題的分析:
例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節中專門介紹.
例2是說出一些比較簡單的`代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規定而已.
6.教法建議
(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發學生的學習興趣。在教學中,一定要注意發揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。
(2)在本節的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。
(3)條件比較好的學校,老師可選用一些多媒體課件,激發學生的學習興趣,增強學生自主學習的能力。
(4)老師在講解第一節之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學期代數的第一節課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。
7.教學重點、難點:
重點:用字母表示數的意義
難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。
教學設計示例
課堂教學過程設計
一、從學生原有的認知結構提出問題
1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發、歸納最后師生共同得出用字母表示數的五種運算律)
(1)加法交換律a+b=b+a;
(2)乘法交換律a·b=b·a;
(3)加法結合律(a+b)+c=a+(b+c);
(4)乘法結合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節課我們將要學習的內容.
三、講授新課
1代數式
單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義
2舉例說明
例1填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產量由m千克增長10%,就達到_______千克
(此例題用投影給出,學生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2說出下列代數式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應由教師示范來完成;
(2)對于代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3用代數式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面
四、課堂練習
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____
2說出下列代數式的意義:(投影)
3用代數式表示:(投影)
(1)x與y的和;(2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和;(4)a除以2的商與b除3的商的和
五、師生共同小結
首先,提出如下問題:
1本節課學習了哪些內容?2用字母表示數的意義是什么?
3什么叫代數式?
教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號
六、作業
1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2張強比王華大3歲,當張強a歲時,王華的年齡是多少?
3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4a千克大米的售價是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長
教案模版初中數學篇3
一、教學目標:
1、理解二元一次方程及二元一次方程的解的概念;
2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
二、教學重點、難點:
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
三、教學方法與教學手段:
通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。
四、教學過程:
1、情景導入:
新聞鏈接:x70歲以上老人可領取生活補助。
得到方程:80a+150b=902880、
2、新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。
做一做:
(1)根據題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:
(2)課本P80練習2、判定哪些式子是二元一次方程方程。
合作學習:
活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的&39;一對未知數的值叫做二元一次方程的一個解。
并提出注意二元一次方程解的書寫方法。
3、合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
出示例題:已知二元一次方程x+2y=8。
(1)用關于y的代數式表示x;
(2)用關于x的代數式表示y;
(3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。
(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
4、課堂練習:
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;
5、你能解決嗎?
小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。
6、課堂小結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。
7、布置作業:
教案模版初中數學篇4
相反數
一、學習目標
1了解相反數的概念。
2給一個數,能求出它的相反數。
3根據a的相反數是-a,能把多重符號化成單一符號。
二、教學過程
師:請同學們畫一條數軸,在數軸上找出表示+6和-6的點,看一看表示這兩個數的點有什么特點,這兩個數本身有什么特點。先獨立思考,然后在小組里交流。
生:人人動用手畫數軸,獨立思考后,在小組內進行交流。
師:深入了解各小組的交流情況,討論結束后,提問1、2人,幫助全班同學理清思考問題的思路。
師:請同學們閱讀課本,知道什么叫相反數,給出一個數能求出它的相反數。
生:閱讀課本第59頁,并完成練習一第(1)~(4)題。
師:提問檢查學生的學習情況,強調“0的相反數是0”也是相反數定義的`一部分。
師:請同學們先想一想,a可以表示一個什么數,a與-a有什么關系。然后閱讀課本第60頁,并完成剩余的練習題,由小組長負責檢查練習情況。
師:認真了解各小組的學習情況,特別是對簡化符號的題和學習困難的學生,要重點對待。
生:認真思考,閱讀課本,完成練習。小組長、教師對學習困難生及時進行輔導。
師:請同學們先小結一下本節課的學習內容。然后,看一看習題2.3中,哪些題你能不動筆說出結果,請在四人小組里互相說一說。(除A組第2題外都可以直接說出結果)
生:小結。完成習題1.3中的有關練習。
練習
1在下列各式中分別填上適當的符號,使等號左右兩端的數相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符號化成單一符號:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根據a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的說法對不對?請舉列說明。
(1)一個有理數的相反數的相反數就是這個有理數本身。
(2)一個有理數的相反數一定比原來的有理數小。
(3)-a是一個負數。
作業
在數軸上記出2,-4.5,0各數與它們的相反數,并指出表示這些數的點離開原點的距離是多少。
教案模版初中數學篇5
教學目的 知識技能使學生會用列一元二次方程的方法解決有關面積、體積方面和經濟方面的問題.
數學思考 提高將實際問題轉化為數學問題的能力以及用數學的意識,滲透轉化的思想、方程的思想及數形結合的思想.
解決問題通過列一元二次方程的方法解決日常生活及生產實際中遇到的有關面積、體積方面和經濟方面的問題.
情感態度 通過探究性學習,抓住問題的關鍵,揭示它的規律性,展示解題的簡潔性的數學美.
教學難點 審題,從文字語言中挖掘有價值的信息.
知識重點 會用列一元二次方程的方法解有關面積、體積方面和經濟方面的問題.
教學過程設計意圖
教學過程
問題一:列方程解應用題的一般步驟?
師生共同回憶
列方程解應用題的步驟:
(1)審題;(2)設未知數;
(3)列方程;(4)求解;
(5)檢驗;(6)答.
問題二:矩形的周長和面積?長方體的體積?
問題三:如圖,某小區內有一塊長、寬比為1:2的矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.
教師活動:引導學生讀題,找到題目中的關鍵語句.
學生活動:在關鍵語句中找到反映相等關系的語句,探究解決辦法.
教師活動:用多媒體演示分析,解題方法.
做一做
如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.
課堂練習:將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的,求這個正方形的邊長.
問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經市場調查發現:如果每件服裝降價1元,平均每天能多售出2件.在國慶節期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應降價多少元?
學生活動:在眾多的文字中,找到關鍵語句,分析相等關系.
教師活動:用多媒體幫助學生分析試題.提示學生檢驗解的合理性.
課堂練習:1.經銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應定為多少元?需要賣出多少雙鞋?
2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據市場調查,該商品的售價與銷售量的關系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25%的.如果商店計劃要獲利400元,則每件商品的售價應定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)
復習列方程解應用題的一般步驟.
本題為后面解決有關面積、體積方面問題做鋪墊.
提高學生的審題能力.使學生會解決有關面積的問題.
解決體積問題的問題
培養學生用數學的意識以及滲透轉化和方程的思想方法.
強調對方程的解進行雙重檢驗.
小結與作業
課堂
小結利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養.
本課
作業課本第43頁習題2
課后隨筆(課堂設計理念,實際教學效果及改進設想)
教案模版初中數學篇6
12.6 一元二次方程的應用(二)
一、素質教育目標
(一)知識教學點:使學生會用列一元二次方程的方法解有關面積、體積方面的應用問題.
(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養用數學的意識.
二、教學重點、難點
1.教學重點:會用列一元二次方程的方法解有關面積、體積方面的應用題.
2.教學難點 :找等量關系.列一元二次方程解應用題時,應注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線段的長度不為負值,人的個數不能為分數等.
三、教學步驟
(一)明確目標.
(二)整體感知
(三)重點、難點的學習和目標完成過程
1.復習提問
(1)列方程解應用題的步驟?
(2)長方形的周長、面積?長方體的體積?
2.例1 現有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?
解:設需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19-2x)cm,寬為(15-2x)cm,
據題意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 當x=13時,15-2x=-11(不合題意,舍去.)
答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子.
練習1.章節前引例.
學生筆答、板書、評價.
練習2.教材P.42中4.
學生筆答、板書、評價.
注意:全面積=各部分面積之和.
剩余面積=原面積-截取面積.
例2 要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應該各是多少(精確到0.1cm)?
分析:底面的長和寬均可用含未知數的代數式表示,則長×寬×高=體積,這樣便可得到含有未知數的等式——方程.
解:長方體底面的寬為xcm,則長為(x+5)cm,
解:長方體底面的寬為xcm,則長為(x+5)cm,
據題意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解這個方程x1=9.0,x2=-14.0(不合題意,舍去).
當x=9.0時,x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長為26cm的長方形鐵皮.
教師引導,學生板書,筆答,評價.
(四)總結、擴展
1.有關面積和體積的應用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關系.
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負.
3.進一步體會數字在實踐中的應用,培養學生分析問題、解決問題的能力.
四、布置作業
教材P.42中A3、6、7.
教材P.41中3.4
五、板書設計
12.6 一元二次方程的應用(二)
例1.略
例2.略
解:設……… 解:…………
………… …………
12.6 一元二次方程的應用(二)
一、素質教育目標
(一)知識教學點:使學生會用列一元二次方程的方法解有關面積、體積方面的應用問題.
(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養用數學的意識.
二、教學重點、難點
1.教學重點:會用列一元二次方程的方法解有關面積、體積方面的應用題.
2.教學難點 :找等量關系.列一元二次方程解應用題時,應注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線段的長度不為負值,人的個數不能為分數等.
三、教學步驟
(一)明確目標.
(二)整體感知
(三)重點、難點的學習和目標完成過程
1.復習提問
(1)列方程解應用題的步驟?
(2)長方形的周長、面積?長方體的體積?
2.例1 現有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?
解:設需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19-2x)cm,寬為(15-2x)cm,
據題意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 當x=13時,15-2x=-11(不合題意,舍去.)
答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子.
練習1.章節前引例.
學生筆答、板書、評價.
練習2.教材P.42中4.
學生筆答、板書、評價.
注意:全面積=各部分面積之和.
剩余面積=原面積-截取面積.
例2 要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應該各是多少(精確到0.1cm)?
分析:底面的長和寬均可用含未知數的代數式表示,則長×寬×高=體積,這樣便可得到含有未知數的等式——方程.
解:長方體底面的寬為xcm,則長為(x+5)cm,
解:長方體底面的寬為xcm,則長為(x+5)cm,
據題意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解這個方程x1=9.0,x2=-14.0(不合題意,舍去).
當x=9.0時,x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長為26cm的長方形鐵皮.
教師引導,學生板書,筆答,評價.
(四)總結、擴展
1.有關面積和體積的應用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關系.
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負.
3.進一步體會數字在實踐中的應用,培養學生分析問題、解決問題的能力.
四、布置作業
教材P.42中A3、6、7.
教材P.41中3.4
五、板書設計
12.6 一元二次方程的應用(二)
例1.略
例2.略
解:設……… 解:…………
………… …………
教案模版初中數學篇7
【關鍵詞】函數;函數思想方法;初中數學
函數概念,首先出現在初中數學課本.初中課本對函數概念是這樣描述的:“設在一個變化過程中,有兩個變量x和y,如果對于變量x的每一個確定的值,變量y都有唯一確定的值與它對應,那么就說,x是自變量,y是x的函數.”
函數概念的出現,開始了變量教學的新起點,打破了在此之前的常量教學的舊格局,許許多多的數學問題都可以利用函數概念來解析,利用函數思想方法來處理,甚至對于一些數學難題,一旦用上了函數思想方法,即迎刃而解,達到非常好的效果.因此,我們必須十分重視函數概念的教學,重視函數思想方法的應用.
一、函數思想方法的特性
函數思想方法,就是用運動和變化的觀點,分析和研究具體問題中的數量關系,通過函數的形式,把這種關系表示出來并加以研究,從而獲得問題的解決辦法.函數思想方法,作為中學數學的思想方法,它具有以下特性:
1.函數概念的抽象性引起函數思想方法的復雜性
函數概念,體現一個變量與另一個變量的一種對應,也體現一個集合到另一個集合的一種映射,在初中數學來講,則是一個變數與另一個變數的一種關系.什么叫對應,什么叫映射,什么叫關系,對初中生來說,是非常陌生的,這些抽象詞匯,造成了學生對函數概念理解上的困難.因此,函數思想方法作為函數概念的外延,就顯得非常復雜了.一個連函數概念都不理解的人,怎么能掌握函數思想方法呢?函數與圖像的親密對應,引發了數形結合方法;函數的等價變換,引發了化歸思想方法;還有其他的,如換元法、配方法、綜合法、分析法等.正確認識函數思想方法的復雜性,使教師更加重視函數概念的教學,更加重視函數思想方法的研究,提高教學的責任心.
2.函數概念的生活性引起函數思想方法的廣闊性
函數概念雖然很抽象,但函數的具體應用卻滲透到我們生活中的各個領域.可以說,我們的生活離不開函數,我們的每一個生產活動也離不開函數,許多關于數量的科學研究問題,只有引入函數才能表達清楚.生活中的每一個問題,只要引入變量,就可以與函數聯系起來,而函數的變化千姿百態,目不暇接,于是,就產生千姿百態的函數思想方法.例如初中數學的路程問題、濃度問題、一次方程和二次方程的解法問題,高中數學體現在生產中的增產節支問題、生產的成本核算問題、一次不等式和二次不等式的求解問題、解三角形問題、面積問題、體積問題等,都可以引入變量,轉變為函數問題.這一轉變,使人們的函數思想方法打開了更為廣闊的前景,解決問題思路也就左右逢源.
3.函數變化的奇異性引起函數思想方法的多樣性
函數的變化經常出現奇妙的效果,三角形的邊與角的關系通過三角式聯系得天衣無縫,懂得了這些道理,不上山者能測山高,不過河者能測河寬,就顯得不足為奇了.二次函數與拋物線的聯系也是如膠似漆,看見二次函數就應該想到拋物線,看見拋物線也應該想到二次函數,二次函數的變化便引起拋物線的運動,而拋物線的運動又使二次函數變得奇異無窮.一次函數與直線的關系也是如此,一次函數的變化與直線的運動,引出許多美妙的數學問題,呈現出多姿多彩的思維效果.本來是生活中的實際問題、如產值最大問題、原料最省問題,還有生產設計問題、最優決策問題,列出了函數,掌握了函數與函數圖像的變化規律,那么,解決問題就如囊中取物.
二、函數思想方法在初中數學教學中的應用
函數概念是初中數學概念的靈魂,函數思想方法是數學方法的主線,它能把數學概念、數學命題、數學原則、數學方法貫穿起來,使得數學內容達到更高層次的和諧與統一.因此,函數概念和函數思想方法在初中數學教學中起到了統帥的作用.數學教師若能抓住函數思想方法這條主線,再把其他思想方法連貫起來,應用于教學的各個環節,可以肯定地說,教學效果是很好的.我們在這方面作了一些有價值的探索.
1.函數思想方法應用于數學教學的全過程
函數的概念是動態的概念,函數思想方法是一種動態的思想方法,這正符合動態式的數學教學的要求.引進函數概念之后,實現了數與點的結合、函數與圖形的結合,還實現了數與形的靈活轉換、符號語言與圖形語言的靈活轉換.我們要幫助學生從局部的、靜止的、割裂的認知結構中解放出來,學會運用動態的、變化的、聯系的觀點來理解數學知識,這乃是提高數學質量的重要途徑.正是考慮到動態教學的新理念,于是,應該把體現動態思想方法的函數思想方法應用于教學的全過程,在課堂教學、課外作業、科研輔導等教學環節,只要能用函數思想方法來處理的,都應運用.這需要毅力,需要創造,需要教師從現有教材中挖掘與函數概念有關系的數學知識點,然后考慮運用函數思想方法解決它.
例1若關于實數x的不等式(k2-2k-3)x2-(k-3)x-1<0恒成立,求k的取值范圍.
這不是一個簡單的一元二次不等式,而是已知這個不等式恒成立,反過來求k的取值范圍.這與函數概念有關嗎?誠然,不等式的左邊可以看做關于變量x的函數,記為y=(k2-2k-3)x2-(k-3)x-1,它的圖像是拋物線,按題意,不等式恒成立,也就是說,函數值y恒小于零,則函數的圖像,即拋物線總在x軸的下方,并且與x軸沒有交點.根據拋物線的這個特點,可以確定,拋物線開口向下,二次項系數a=k2-2k-3<0,又可以確定,拋物線全部落在下半平面,與x軸沒有交點,則二次方程沒有實數根,Δ=(k-3)2+4(k2-2k-3)<0.這是一次成功的轉化,把題意轉化為解下列不等式組:
a=k2-2k-3<0,Δ=(k-3)2+4(k2-2k-3)<0
(k+1)(k-3)<0①(5k+1)(k-3)<0②-<k<3.
故k的取值范圍是-<k<3.
這個數學問題的解決,確實是運用了函數思想,把不等式問題轉化為函數問題,再把函數問題轉化為圖形問題,最后又把圖形的特征轉化為另一個不等式組的計算,這樣的一條龍似的解題過程相當流暢,不僅充分體現了函數思想與方程思想、數形結合思想、轉化思想的高度統一,同時也是函數思想方法解決問題的一個典型范例.
例2已知(1-2x)7=a0+a1x+…+a7x7,求代數式a1+a2+…+a7的值.
這個問題初中生能解決嗎?初看起來,有點像二項展開式,是高中的問題.按高中知識來做,那就得把左邊按二項式定理展開,對比兩邊系數,分別求出a1,a2,…,a7的值,最后把它們加起來,就得代數式a1+a2+…+a7的值,難度不小啊!
認真觀察一下,這也是一個函數問題.把已知問題看做函數,記為y=(1-2x)7=a0+a1x+…+a7x7.
當x=0時,y=(1-2×0)7=a0=1;
當x=1時,y=(1-2×1)7=a0+a1+…+a7=-1,
所以a1+a2+…+a7=(a0+a1+…+a7)-a0=-1-1=-2.
一個看起來似乎是高中的數學問題,用了函數思想方法,卻變成了初中生也能接受的數學問題.函數思想方法的功能不小啊!
2.函數思想方法要與其他數學知識緊密結合
函數思想方法確實是解決數學問題的有力武器,但絕不是萬能武器.不是說所有數學問題都能用函數思想方法解決,而是說,凡能轉化為函數問題的,就應該盡量轉化.這也體現函數概念與其他數學知識的緊密結合.
3.函數思想方法應用于解決實際數學問題
我們的生活空間是一個巨大的數學空間,生活中的每一個實際問題大都能轉化為數學問題,其中相當大的部分可以用函數思想方法來處理.為了強化函數思想方法的應用,更為了培養學生運用函數思想方法解決實際問題的能力,讓學生學會解決身邊發生的經濟問題,學會解決經濟發展過程中的一些社會問題.為此,我們應該努力創設良好的學習環境,使學生在學習中得到鍛煉.
例3數學競賽隊的3位教師和若干名參賽學生準備乘飛機到北京參加全國性比賽,按當地飛機票價,乘飛機往返每人需交3000元.但民航服務站對師生乘坐飛機有優惠的臨時規定:第一種優惠方案是教師買全票,學生買半票;第二種優惠方案為師生一律按六折優惠購票.你認為,應采取哪一種優惠方案?
這是發生在學生身邊的與經濟有關的生活問題,采取哪種方案,當然應以節約為原則,哪種方案為競賽隊節約開支,就采取哪種方案.考慮把旅費與學生人數建立函數關系,若設學生人數為x,兩種優惠方案的旅費分別為y1和y2,則
y1=3000×3+1500x=9000+1500x,
y2=3000×0.6×(x+3)=1800×(x+3).
y1<y2?圳9000+1500x<1800x+5400?圳x>12;
y1>y2?圳9000+1500x>1800x+5400?圳x<12;
y1=y2?圳9000+1500x=1800x+5400?圳x=12.
當學生人數多于12人時,采取第一種優惠方案;當學生人數少于12人時,采取第二種優惠方案;當學生人數等于12人時,采取哪種優惠方案都可以.
函數思想方法在解決數學問題中的確起到非常重要的作用,我們應加強這一方法的教學探討和學習訓練,把數學教學推向新水平.
【參考文獻】
教案模版初中數學篇8
【說教學目標】
1、使學生理解邊邊邊公理的內容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創造條件;
2、繼續培養學生畫圖、實驗,發現新知識的能力。
【說重點難點】
1、難點:讓學生掌握邊邊邊公理的內容和運用公理的自覺性;
2、重點:靈活運用SSS判定兩個三角形是否全等。
【說教學過程】
一、創設問題情境,引入新課
請問同學,老師在黑板上畫得兩個三角形,△ABC與△全等嗎?你是如何判定的。
(同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀察是否有三條邊對應相等,三個角對應相等。)
上一節課我們已經探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全
等。滿足三個條件時,兩個三角形是否全等呢?現在,我們就一起來探討研究。
二、實踐探索,總結規律
1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段,分別為,你能畫出這個三角形嗎?
先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟。
步驟:
(1)畫一線段AB使它的`長度等于c(4.8cm)。
(2)以點A為圓心,以線段b(3cm)的長為半徑畫圓弧;以點B為圓心,以線段a(4cm)的長為半徑畫圓弧;兩弧交于點C.
(3)連結AC、BC.
△ABC即為所求
把你畫的三角形與其他同學的圖形疊合在一起,你們會發現什么?
換三條線段,再試試看,是否有同樣的結論
請你結合畫圖、對比,說說你發現了什么?
同學們各抒己見,教師總結:給定三條線段,如果它們能組成三角形,那么所畫的三角形都是全等的。這樣我們就得到判定三角形全等的一種簡便的方法:如果兩個三角形的三條邊分別對應相等,那么這兩個三角形全等。簡寫為邊邊邊,或簡記為(S.S.S.)。
2、問題2:你能用相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?
(我們已經知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形。)
3、問題3、你用這個SSS三角形全等的判定法解釋三角形具有穩定性嗎?
(只要三角形三邊的長度確定了,這個三角形的形狀和大小就完全確定了)
4、范例:
例1如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因為AC是公共邊,由(S.S.S.)全等判定法,可知△ABC≌△CDA
5、練習:
6、試一試:已知一個三角形的三個內角分別為、、,你能畫出這個三角形嗎?把你畫的三角形與同伴畫的進行比較,你發現了什么?
(所畫出的三角形都是相似的,但大小不一定相同)。
三個對應角相等的兩個三角形不一定全等。
三、加強練習,鞏固知識
1、如圖,,,△ABC≌△DCB全等嗎?為什么?
2、如圖,AD是△ABC的中線,。與相等嗎?請說明理由。
四、小結
本節課探討出可用(SSS)來判定兩個三角形全等,并能靈活運用(SSS)來判定三角形全等。三個角對應相等的兩個三角不一定會全等。
教案模版初中數學篇9
教學目標
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.
教學過程
1.情景導入:
新聞鏈接:桐鄉70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_
5.課堂總結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.
作業布置
本章的課后的方程式鞏固提高練習。
教案模版初中數學篇10
一、 教材結構與內容簡析
在分析新數學課程標準的基礎上確定了本節課在教材中的地位和作用以及確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。
有理數的加減法在整個知識系統中的地位和作用是很重要的。它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、、研究函數等內容的學習。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。 就第一章而言,有理數的加減法是本章的一個重點。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵是這一節的學習。
數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透的德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養學生嚴謹的思維品質。
二、 教學目標
根據新課程標準和上述對教材結構與內容分析,考慮到學生已有的認知結構及心理特征 ,制定如下教學目標:
1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;
2. 通過學習理解加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;
3.通過加法運算練習,培養學生的運算能力。
三、教學建議
(一)重點、難點分析
本小節的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略符號與括號的代數和的計算.
由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)教法建議
1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.
2.關于“去括號法則”,只要學生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如:-3-4表示-3、-4兩數的代數和,-4+3表示-4、+3兩數的代數和,3+4表示3和+4的代數和等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。
4.先把正數與負數分別相加,可以使運算簡便。
5.在交換加數的位置時,要連同前面的符號一起交換。如:12-5+7 應變成 12+7-5,而不能變成12-7+5。
備注:教學過程我主要說第一小節---去括號
(三)教學過程:根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.
教案模版初中數學篇11
一、教學目標知識與技能目標。
1、能熟練作出一次函數的圖像,掌握一次函數及其圖像的簡單性質;
2、初步了解函數表達式與圖像之間的關系。
過程與方法目標。
1、經歷作圖過程中由一般到特殊方法的轉變過程,讓學生體會研究問題的基本方法。
2、經歷對一次函數性質的探索過程,增強學生數形結合的意識,培養學生識圖能力;
3、經歷對一次函數性質的探索過程,培養學生的觀察力、語言表達能力。情感與態度目標
1、在作圖的過程中,體會數學的美;
2、經歷作圖過程,培養學生尊重科學,實事求是的作風。
二、教材分析。
本節課是在學習了一次函數解析式的基礎上,從圖像這個角度對一次函數進行近一步的研究。教材先介紹了作函數圖像的一般方法:列表、描點、連線法,再進一步總結出作一次函數圖像的特殊方法——兩點連線法。結合一次函數的圖像,對一次函數的單調性作了探討;對一次函數的幾何意義也有涉及。在教學中要結合學生的認識情況,循序漸進,逐層深入,對教材內容可作適當增加,但不宜太難。為進一步學習圖像及性質奠定了基礎。教學重點:結合一次函數的圖像,研究一次函數的簡單性質教學難點:一次函數性質的應用
三、學情分析函數的圖像的概念及作法對學生而言都是較為陌生的。
教材從作函數圖像的一般步驟開始介紹,得出一次函數圖像是條直線。在此基礎上介紹用兩點連線得一次函數的圖像,學生就容易接受了。在函數解析式與圖像二者之間的探討這部分內容上,不要作更高要求,學生能回答書中的問題就可以了。教學中盡可能的多作幾個一次函數的圖像,讓學生直觀感受到一次函數的圖像是條直線。
四、教學流程(一)、復習引入
1、什么叫做一次函數?
2、你能說說正比例函數y=kx(k≠0)的性質嗎?
3、針對函數y=kx+b,要研究什么?怎樣研究?
(二)做一做
例1、畫出函數y1=2x與y2=2x+3,y3=2x-2的圖像二、新課講解把一個函數的自變量和對應的因變量的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。下面我們來作一次函數y1=2x與y2=2x+3,y3=2x-2的圖像分析:根據定義,需要在直角坐標系中描出許多點,因此我們應先計算這些點的橫、縱坐標,即x與對應的y的值。我們可借助一個表格來列出每一對x,y的值。因為一次函數的自變量X可以取一切實數,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3y3=2x-2描點:以表中各組對應值作為點的坐標,在直角坐標系內描出相應的點。連線:把這些點依次連接起來,得到圖像(如圖)它們是一條直線。
觀察圖像回答下列問題:
(1)這三個一次函數圖像的形狀都是,并且傾斜程度,即互相。
(2)y1=2x的圖像經過。
(3)y2=2x+3的圖像與y1=2x圖像,且與y軸交于,即y2可以看作由y1向平移個單位長度得到,圖像經過第象限,k,b的符號如何?()(4)y3=2x-2的圖像與y1=2x圖像,且與y軸交于,即y3可以看作由y1向平移個單位長度得到,圖像經過第象限,k,b的符號如何?
結論:
1、一次函數y=kx+b(k≠0)的圖像可以由直線y=kx平移個單位長度得到。(上加下減)
2、一次函數y=kx+b(k≠0)的圖像是一條直線,我們稱它為直線y=kx+b。
3、平行的直線k相等。
三、做一做。
(1)利用兩點確定一條直線(兩點畫法)畫出y=-x+3和y=-x及y=-x-4的圖象的圖像。
師:回顧剛才的作圖過程,經歷了幾個步驟?
生:經歷了列表、描點、連線這三個步驟。
師:回答得很好。作函數圖像的一般步驟是列表、描點、連線。今后我們可以用這個方法去作出更多函數的圖像。
師:從剛才同學們作出的一次函數的圖像中我們可以觀察到一次函數圖像是一條直線。
(2)在所作的圖像上取幾個點,找出它們的橫、縱坐標
四、議一議觀察圖像思考:
(1)一次函數的圖像從左往右是上升還是下降,由圖像怎么看函數的增減性(y隨x的變化),你認為決定條件是什么?
(2)圖像經過哪些象限?k,b的符號如何?
(3)y=-x+3和y=-x-4是由y=-x怎樣平移得到的?一次函數y=kx+b的圖像是一條直線,因此作一次函數的圖像時,只要確定兩個點,再過這兩個點作直線就可以了。一次函數y=kx+b的圖像也稱為直線y=kx+b
例1做出下列函數的圖像
(1)y=x+3
(2)y=-x+3
(3)y=2x-4
(4)y=-2x-4
五、課堂小結。
這節課我們學習了一次函數的圖像。一次函數的圖像是一條直線,正比例函數的圖像是經過原點的一條直線。在作圖時,只需確定直線上兩點的位置,就可得到一次函數的圖像。一般地,作函數圖像的三個步驟是:列表、描點、連線。
六、課后練習。
書上93頁練習五、教學反思本節課主要介紹作函數圖像的一般方法,通過對一次函數圖像的認識,得到作一次函數及正比例函數的圖像的特殊方法(兩點確定一條直線)。讓學生能夠迅速找到直線與坐標軸的交點,這是本節課的難點。數形結合,找準這兩個特殊點坐標的特點(x=0或y=0),讓學生理解的記憶才能收到較好的效果。
教案模版初中數學篇12
(一)本節內容在教材中的地位與作用。
對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩三角形間最簡單、最常見的關系。本節《探索三角形全等的條件》是學生在認識三角形的基礎上,在了解全等圖形和全等三角形以后進行學習的,它既是前面所學知識的延伸與拓展,又是后繼學習探索相似形的條件的基礎,并且是用以說明線段相等、兩角相等的重要依據。因此,本節課的知識具有承上啟下的作用。同時,蘇科版教材將“邊角邊”這一識別方法作為五個基本事實之一,說明本節的內容對學生學習幾何說理來說具有舉足輕重的作用。
(二)教學目標
在本課的教學中,不僅要讓學生學會“邊角邊”這一全等三角形的識別方法,更主要地是要讓學生掌握研究問題的方法,初步領悟分類討論的數學思想。同時,還要讓學生感受到數學來源于生活,又服務于生活的基本事實,從而激發學生學習數學的興趣。為此,我確立如下教學目標:
(1)經歷探索三角形全等條件的過程,體會分析問題的方法,積累數學活動的經驗。
(2)掌握“邊角邊”這一三角形全等的識別方法,并能利用這些條件判別兩個三角形是否全等,解決一些簡單的實際問題。
(3)培養學生勇于探索、團結協作的精神。
(三)教材重難點
由于本節課是第一次探索三角形全等的條件,故我確立了以“探究全等三角形的必要條件的個數及探究邊角邊這一識別方法作為教學的重點,而將其發現過程以及邊邊角的辨析作為教學的難點。同時,我將采用讓學生動手操作、合作探究、媒體演示的方式以及滲透分類討論的數學思想方法教學來突出重點、突破難點。
(四)教學具準備,教具:相關多媒體課件;學具:剪刀、紙片、直尺。畫有相關圖片的作業紙。
二、教法選擇與學法指導
本節課主要是“邊角邊”這一基本事實的發現,故我在課堂教學中將盡量為學生提供“做中學”的時空,讓學生進行小組合作學習,在“做”的過程中潛移默化地滲透分類討論的數學思想方法,遵循“教是為了不教”的原則,讓學生自得知識、自尋方法、自覓規律、自悟原理。
三、教學流程
(一)創設情景,激發求知欲望
首先,我出示一個實際問題:
問題:皮皮公司接到一批三角形架的加工任務,客戶的要求是所有的三角形必須全等。質檢部門為了使產品順利過關,提出了明確的要求:要逐一檢查三角形的三條邊、三個角是不是都相等。技術科的毛毛提出了質疑:分別檢查三條邊、三個角這6個數據固然可以。但為了提高我們的效率,是不是可以找到一個更優化的方法,只量一個數據可以嗎?兩個呢?……
然后,教師提出問題:毛毛已提出了這么一個設想,同學們是否可以和毛毛一起來攻克這個難題呢?
這樣設計的目的是既交代了本節課要研究和學習的主要問題,又能較好地激發學生求知與探索的欲望,同時也為本節課的教學做好了鋪墊。
(二)引導活動,揭示知識產生過程
數學教學的本質就是數學活動的教學,為此,本節課我設計了如下的系列活動,旨在讓學生通過動手操作、合作探究來揭示“邊角邊”判定三角形全等這一知識的產生過程。
活動一:讓學生通過畫圖或者舉例說明,只量一個數據,即一條邊或一個角不能判斷兩個三角形全等。
活動二:讓學生就測量兩個數據展開討論。先讓學生分析有幾種情況:即邊邊、邊角、角角。再由各小組自行探索。同樣可以讓學生舉反例說明,也可以通過畫圖說明。
活動三:在兩個條件不能判定的基礎上,只能再添加一個條件。先讓學生討論分幾種情況,教師在啟發學生有序思考,避免漏解。如:
邊
1
2
3
角
3
2
1
教師提出3個角不能判定兩三角形全等,實質我們已經討論過了。明確今天的任務:討論兩條邊一個角是否可以判定兩三角形全等。師生再共同探討兩邊一角又分為兩邊一夾角與兩邊一對角兩種情況。
活動四:討論第一種情況:各小組每人用一張長方形紙剪一個直角三角形(只用直尺和剪刀),怎樣才能使各小組內部剪下的直角三角形都全等呢?主要是讓學生體驗研究問題通常可以先從特殊情況考慮,再延伸到一般情況。
活動五:出示課本上的3幅圖,讓學生通過觀察、進行猜想,再測量或剪下來驗證。并說說全等的圖形之間有什么共同點。
活動六:小組競賽:每人畫一個三角形,其中一個角是30°,有兩條邊分別是7cm、5cm,看哪組先完成,并且小組內是全等的。這樣既調動了學生的積極性,又便于發現邊角邊的識別方法。
最后教師再用幾何畫板演示,學生進行觀察、比較后,師生共同分析、歸納出“邊角邊”這一識別方法。
若有小組畫成邊邊角的形式,則順勢引出下面的探究活動。否則提出:若兩個三角形有兩條邊及其中一邊的對角對應相等,則這兩個三角形一定全等嗎?
活動七:在給出的畫有的圖上,讓學生自主探究(其中另一條邊為5cm),看畫出的三角形是否一定全等。讓學生在給出的圖上研究是為了減小探索的麻木性。
教師用幾何畫板演示,讓學生在辨析中再次認識邊角邊。同時完成課后練習第一題。
(三)例題教學,發揮示范功能
例題教學是課堂教學的一個重要環節,因此,如何充分地發揮好例題的教學功能是十分重要的。為此,我將充分利用好這道例題,培養學生有條理的說理能力,同時,通過對例題的變式與引伸培養學生發散思維能力。
首先,我將出示課本例1,并設計下列系列問題,讓學生一步一步地走向“知識獲得與應用”的理想彼岸。
問題1:請說說本例已知了哪些條件,還差一個什么條件,怎么辦?(讓學生學會找隱含條件)。
問題2:你能用“因為……根據……所以……”的表達形式說說本題的說理過程嗎?
問題3:ADC可以看成是由ABC經過怎樣的圖形變換得到的?
在探索完上述3個問題的基礎上,對例題作如下的變式與引伸:
ABC與ADC全等了,你又能得到哪些結論?連接BD交AC于O,你能說明BOC與DOC全等嗎?若全等,你又能得到哪些結論?
這樣設計的目的在于體現“數學教學不僅僅是數學知識的教學,更重要的發展學生數學思維的教學”這一思想。
在例題教學的基礎上,為了及時的反饋教學效果,也為提高學生知識應用的水平,達到及時鞏固的目的,我設計了如下兩個練習:
(1)基礎知識應用。完成教材P139練一練2。
(2)已知如圖:,請你添加一些適當的條件,再根據SAS的識別方法說明兩個三角形全等。對學生進行逆向思維訓練,同時讓學生發現對頂角這一隱含條件。
(四)課堂小結,建立知識體系。
(1)本節課你有哪些收獲:重點是將研究問題的方法進行一次梳理,對邊角邊的識別方法進行一次回顧。
(2)你還有哪些疑問?
附板書設計:
三角
探索三角形全等的條件
兩角一邊
探究活動一:兩個三角形全等至少要幾個條件
一角兩邊
一個條件行不通兩個條件行不通三個條件
三邊
探究活動二:全等三角形的識別方法:
特殊------一般
教案模版初中數學篇13
教學目標
理解平行四邊形的定義,能根據定義探究平行四邊形的性質.
教學思考
1.通過觀察、實驗、猜想、驗證、推理、交流等數學活動,發展學生合情推理能力和動手操作能力及應用數學的意識與能力.
2.能夠根據平行四邊形的性質進行簡單的推理和計算.
解決問題
通過平行四邊形性質的探索過程,豐富學生從事數學活動的經驗與體驗,能運用平行四邊形的性質進行有關的推理和計算,發展應用意識.
情感態度
在應用平行四邊形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.
重點
平行四邊形的性質的探究和平行四邊形的性質的應用.
難點
平行四邊形的性質的應用.
教學流程安排
活動流程圖
活動內容和目的
活動1欣賞圖片,了解生活中的特殊四邊形
活動2剪三角形紙片,拼凸四邊形
活動3理解平行四邊形的概念
活動4探究平行四邊形邊、角的性質
活動5平行四邊形性質的應用
活動6評價反思、布置作業
熟悉生活中特殊的四邊形,導出課題.
通過用三角形拼四邊形的過程,滲透轉化思想,激發探索精神.
掌握平行四邊形的定義及表示方法.
探究平行四邊形的性質.
運用平行四邊形的性質.
學生交流,內化知識,課后鞏固知識.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
下面的圖片中,有你熟悉的哪些圖形?
(出示圖片)
演示圖片,學生欣賞.
教師介紹四邊形與我們生活密切聯系,學生可再補充列舉.
從實例圖片中,抽象出的特殊四邊形,培養學生的抽象思維.通過舉例,讓學生感受到數學與我們的生活緊密聯系.
問題與情景
師生行為
設計意圖
[活動2]
拼一拼
將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.
(1)你拼出了怎樣的凸四邊形?與同伴交流.
(2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關系?說說你的理由.
學生經過實驗操作,開展獨立思考與合作學習.
教師深入學生之中,觀察學生頻出的方法與過程,接受學生質疑并指導個別學生探究.
教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節課研究的內容
教案模版初中數學篇14
一、教材分析
1、教材的地位和作用
本節教材是初中數學__年級冊的內容,是初中數學的重要內容之一。一方面,這是在學習了__的基礎上,對__的進一步深入和拓展;另一方面,又為學習-__等
知識奠定了基礎,是進一步研究__的工具性內容。因此本節課在教材中具有承上啟下的作用。
2、學情分析
學生在此之前已經學習了__,對__已經有了初步的認識,這為順利完成本節課的教學任務打下了基礎,但對于__的理解,(由于其抽象程度較高,)學生可能會產生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。
3、教學重難點
根據以上對教材的地位和作用,以及學情分析,結合新課標對本節課的要求,我將本節課的重點確定為、
難點確定為、
二、教學目標分析
根據新課標的教學理念,培養學生的數學素養和終身學習的能力,我確立了如下的三維目標
1.知識與技能目標
2.過程與方法目標
3.情感態度與價值目標
三、教學方法分析
本節課我將采用啟發式、討論式結合的教學方法,以問題的提出、問題的解決為主線,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。
另外,在教學過程中,采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。
四、教學過程分析
為有序、有效地進行教學,本節課我主要安排以下教學環節、
(1)復習就知,溫故知新
設計意圖、建構主義主張教學應從學生已有的知識體系出發,__是本節課深入研究__的認知基礎,這樣設計有利于引導學生順利地進入學習情境。
(2)創設情境,提出問題
設計意圖、以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望。
通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節。
(3)發現問題,探求新知
設計意圖、現代數學教學論指出,教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。
(4)分析思考,加深理解
設計意圖、數學教學論指出,數學概念(定理等)要明確其內涵和外延(條件、結論、應用范圍等),通過對定義的幾個重要方面的闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。
通過前面的學習,學生已基本把握了本節課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入第__環節。
(5)強化訓練,鞏固雙基
設計意圖、幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,內化知識。
(6)小結歸納,拓展深化
小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主體地位,讓學生暢談本節課的收獲.
(7)當堂檢測對比反饋
(8)布置作業,提高升華
以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。
以上是我對本節課的見解,不足之處敬請各位評委諒解!
教案模版初中數學篇15
教學目標:
教學目標:
1、會畫已知點關于已知直線的對稱點,會畫已知線段的對稱線段,會畫已知三角形的對稱三角形。
2、經歷探索軸對稱的性質的活動過程,積累數學活動經驗,進一步發展空間觀念和有條理地思考和表達能力。
三、教學重點與難點
教學重點:作已知圖形的軸對稱圖形的一般步驟。
教學難點:怎樣確定已知圖形的關鍵點并根據這些點作出對稱圖形。
學習過程:
一.學前準備
1、完成課本第10頁的操作,即圖1—6,并將你完成的操作帶到課堂上來。
2、思考:
下列圖形中,哪些是軸對稱圖形,請把它們找出來,畫出它們所有的對稱軸。
3、請你在下圖的方格內,設計一個軸對稱圖形。
二.自學、合作探究
(一)自學、相信自己(書本)
實踐、操作:
1、思考:如圖1-9,3點都在方格紙的格點位置上。請你再找一個格點,使圖中的4點組成一個軸對稱圖形。
2、如果直線外有一點,那么怎樣畫出點關于直線的.對稱點?
問題一:畫點關于直線的對稱點的方法,并說明道理。
問題二:怎樣畫已知線段的對稱線段?怎樣畫已知三角形的對稱三角形?說說你的想法和依據。
(二)思索、交流(書本例題練習難)
3、分別畫出圖1-10(1)、(2)、(3)中線段關于直線對稱的線段。
4、分別在圖圖1-10(1)、(2)、(3)的直線上取一點,并畫關于直線對稱的.
(三)應用、探究(難度大綜合縱橫思考)
例題講解
例題1、如圖所示,要在街道旁修建一個牛奶站,向居民區A、B提供牛奶,牛奶站應建在什么地方,才能使A、B到它的距離之和最短?
例題1
例題2
三.學習體會(空)
四.自我測試(書本練習)
1.練習1下列數字圖象都是由鏡中看到的,請分別寫出它們所對應的實際數字,并說明數字圖象與鏡面的位置關系。
1、如圖1,線段AB與A’B’關于直線l對稱,
⑴連接AA’交直線l于點O,再連接OB、OB’。
⑵把紙沿直線l對折,重合的線段有:。
⑶因為△OAB和△OA’B’關于直線l,所以△OAB-△OA’B’,直線l垂直平分線段,∠ABO=∠,∠AO’B=∠。
圖1圖2圖3
2、如圖2,三角形Ⅰ的兩個頂點分別在直線l1和l2,且l1⊥l2,
⑴畫三角形Ⅱ與三角形Ⅰ關于l1對稱;
⑵畫三角形Ⅲ與三角形Ⅱ關于l2對稱;
⑶畫三角形Ⅳ與三角形Ⅲ關于l1對稱;
⑷所畫的三角形Ⅳ與三角形Ⅰ成軸對稱嗎?
3、如圖3,四邊形ABCD是長方形彈子球臺面,有黑白兩球分別位于E、F兩點位置上,試問怎樣撞擊黑球E,才能使黑球先碰撞臺邊AB反彈后再擊中白球F?
教案模版初中數學篇16
教學目標:運用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點,會用提公因式法與公式法分解因式.培養學生的觀察、聯想能力,進一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應用提公因式法、公式法分解因式以及因式分解的標準.
教學重點和難點:1.平方差公式;2.完全平方公式;3.靈活運用3種方法.
教學過程:
一、提出問題,得到新知
觀察下列多項式:x24和y225
學生思考,教師總結:
(1)它們有兩項,且都是兩個數的平方差;(2)會聯想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項式是兩數差的.形式,并且這兩個數又都可以寫成平方的形式,那么這個多項式可以運用平方差公式分解因式.
二、運用公式
例1:填空
①4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項式能否用平方差公式進行因式分解
①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
②4a2+625b2不能用
③16x549y4不能用
④4x236y2不能用
教案模版初中數學篇17
教學目標
1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;
2.通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;
3.通過加法運算練習,培養學生的運算能力。
教學建議
(一)重點、難點分析
本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.
由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)知識結構
(三)教法建議
1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.
2.關于“去括號法則”,只要學生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如
-3-4表示-3、-4兩數的代數和,
-4+3表示-4、+3兩數的代數和,
3+4表示3和+4的代數和
等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。
4.先把正數與負數分別相加,可以使運算簡便。
5.在交換加數的位置時,要連同前面的符號一起交換。如
12-5+7應變成12+7-5,而不能變成12-7+5。
教學設計示例
有理數的加減混合運算(一)
一、素質教育目標
(一)知識教學點
1.了解:代數和的概念.
2.理解:有理數加減法可以互相轉化.
3.應用:會進行加減混合運算.
(二)能力訓練點
培養學生的口頭表達能力及計算的準確能力.
(三)德育滲透點
通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.
(四)美育滲透點
學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.
二、學法引導
1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練
習,步步為營,分散難點,解決關鍵問題.
2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.
三、重點、難點、疑點及解決辦法
1.重點:把加減混合運算算式理解為加法算式.
2.難點:把省略括號和的形式直接按有理數加法進行計算.
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片.
六、師生互動活動設計
教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.
七、教學步驟
(一)創設情境,復習引入
師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目:-9+(+6);(-11)-7.
師:(1)讀出這兩個算式.
(2)“+、-”讀作什么?是哪種符號?
“+、-”又讀作什么?是什么符號?
學生活動:口答教師提出的問題.
師繼續提問:(1)這兩個題目運算結果是多少?
(2)(-11)-7這題你根據什么運算法則計算的?
學生活動:口答以上兩題(教師訂正).
師小結:減法往往通過轉化成加法后來運算.
【教法說明】為了進行有理數的加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.
師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))
教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.
(二)探索新知,講授新課
1.講評(-9)+(-6)-(-11)-7.
(1)省略括號和的形式
師:看到這個題你想怎樣做?
學生活動:自己在練習本上計算.
教師針對學生所做的方法區別優劣.
【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.
師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??
學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).
【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.
鞏固練習:(出示投影1)
1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+()-()-().
2.判斷
式子-7+1-5-9的正確讀法是().
A.負7、正1、負5、負9;
B.減7、加1、減5、減9;
C.負7、加1、負5、減9;
D.負7、加1、減5、減9;
學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.
【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.
2.用加法運算律計算出結果
師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.
-9+6+11-7
=-9-7+6+11.
學生活動:按教師要求口答并讀出結果.
鞏固練習:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
學生活動:討論后回答.
【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.
師:-9-7+6+11怎樣計算?
學生活動:口答
[板書]
-9-7+6+11
=-16+17
=1
鞏固練習:(出示投影3)
1.計算(1)-1+2-3-4+5;
(2).
2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
學生活動:四個同學板演,其他同學在練習本上做.
【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.
師小結:有理數加減法混合運算的題目的步驟為:
1.減法轉化成加法;
2.省略加號括號;
3.運用加法交換律使同號兩數分別相加;
4.按有理數加法法則計算.
(三)反饋練習
(出示投影4)
計算:(1)12-(-18)+(-7)-15;
(2).
學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.
【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.
(四)歸納小結
師:1.怎樣做加減混合運算題目?
2.省略括號和的形式的兩種讀法?
學生活動:口答.
【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.
八、隨堂練習
1.把下列各式寫成省略括號的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.說出式子-3+5-6+1的兩種讀法.
3.計算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作業
(一)必做題:1.計算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)選做題:(1)當時,,,哪個最大,哪個最小?
(2)當時,,,哪個最大,哪個最小?
十、板書設計
教案模版初中數學篇18
各位專家領導:
你們好!
今天我說課的內容是人教版七年級上冊1、2、4絕對值內容。
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
(一)、教材所處的地位與作用:
本節內容在全書及章節的地位是:《絕對值》是七年級數學教材上冊1、2、4節內容。在此之前,學生已學習了有理數,數軸與相反數等基礎內容,這為過渡到本節的學習起著鋪墊作用。絕對值不僅可以使學生加深對有理數的認識,還為以后學習兩個負數的比較大小以及有理數的運算作好必要的準備!所以說本講內容在有理數這一節中,占據了一個承上啟下的位置。
(二)、教育教學目標:
根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下:
1、知識目標:
1)使學生了解絕對值的表示法,會計算有理數的絕對值。
2)能利用數形結合思想來理解絕對值的幾何定義;理解絕對值非負的意義。
3)能利用分類討論思想來理解絕對值的代數定義;理解字母a的任意性。
2、能力目標:
通過教學初步培養學生分析問題,解決實際問題,讀圖分析、收集處理信息、團結協作、語言表達的能力,以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力。
3、思想目標:
通過對絕對值的教學,讓學生初步認識到數學知識來源于實踐,引導學生從現實生活的經歷與體驗出發,激發學生對數學問題的興趣,使學生了解數學知識的功能與價值,形成主動學習的態度。
(三):重點,難點以及確定的依據:
本課中絕對值的兩種定義是重點,絕對值的代數定義是本課的難點,其理論依據是如何突破絕對值符號里字母a的任意性這一難點,由于學生年齡小,解決實際問題能力弱,對數學分類討論思想理解難度大。
下面,為了講清重難點,使學生能達到本節課設定的教學目標,我再從教法與學法上談談:
二、教學策略(說教法)
(一)、教學手段:
由于七年級學生的理解能力與思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,相反數,對正負數,相反數的概念理解不一定非常深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法與師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。
教學中積極利用多媒體課件,向學生提供更多的活動機會和空間,使學生在動腦、動手的過程中獲得充足的體驗與發展,從而培養學生的數形結合的思想。
為充分發揮學生的主體性與教師的主導輔助作用,教學過程中我設計了七個教學環節:
1、溫故知新,激發情趣
2、得出定義,揭示內涵
3、手腦并用,深入理解
4、啟發誘導,初步運用
5、反饋矯正,注重參與
6、歸納小結,強化思想
7、布置作業,引導預習
(二)、教學方法及其理論依據:
堅持“以學生為主體,以教師為主導”的原則,即“以學生活動為主,教師講述為輔,學生活動在前,教師點撥評價在后”的原則,根據七年級學生的心理發展規律,聯系實際安排教學內容。采用學生參與程度高的學導式討論教學法。在學生看書、討論基礎上,在教師啟發引導下,運用問題解決式教學法,師生交談法、問答法、課堂討論法,引導學生來理解教材中的理論知識。
在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現的機會,培養其自信心,激發其學習熱情。有效地開發各層次學生的潛在智能,力求使每個學生都能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐,學以致用,落實教學目標。
三:學情分析:(說學法)
1、知識掌握上,七年級學生剛剛學習有理數中的相反數,對相反數的概念理解不一定非常深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。
2、學生學習本節課的知識障礙。學生對絕對值兩種概念,不易理解,容易出錯,所以教學中教師應予以簡單明白、深入淺出的分析。
3、由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用多媒體課件,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
4、心理上,學生對數學課的重視與興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。
最后我來具體談一談這一堂課的教學過程:
四、教學程序設計
(一)、溫故知新,激發情趣:
首先打出第一張幻燈片復習提問:什么叫做相反數?學生回答后讓大家討論:你能找出互為相反數的兩個數在數軸上表示的點的共同特點嗎?學生會積極回答第一個問題,但第二個問題學生可能難以準確回答,于是打出第二張幻燈片引導學生仔細觀察,認真思考。從而引出課題:絕對值。結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。
(二)、得出定義,揭示內涵:
由于學生是第一次接觸絕對值這樣比較深奧的數學名詞,所以我利用數軸在第三張幻燈片里直接給出絕對值的幾何定義:一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,(absolutevalue)這個定義學生接受起來比較容易。
給出定義后引導學生討論:“定義里的數a可以表示什么樣的數?
(通過教師親切的語言啟發學生,以培養師生間的默契)通過討論由師生共同得到絕對值定義里的數a可以是正數,負數和0。
然后再回到第一張幻燈片里提出的問題:互為相反數的兩個數的絕對值有什么關系?
(三)、手腦并用,深入理解:
1、在上一環節與學生一起理解了絕對值的定義后,我再提出問題:如何由文字語言向數學符號語言的轉化,即如何簡單地標記絕對值,而不用漢字?在此不用提問學生,采取自問自答形式給出絕對值的記法。
2、為進一步強化概念,在對絕對值有了正確認識的基礎上,請學生做教材的課堂練習第一題,寫出一些數的絕對值。可以請學生起立回答。我就學生的回答情況給出評價,如“非常好”“非常規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發展;并再次強調絕對值的定義。
3、在完成第一題的練習后,我又給出一新的幻燈片,并提出問題:議一議一個數的絕對值與這個數有什么關系?啟發學生舉一些實際的例子來發現規律,并總結規律。從而引出絕對值的第二個定義。
(四)、啟發誘導,初步運用:
有了絕對值的兩個定義后,我安排了10道不同層次的判斷題讓學生思考。特別注重對于不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現的機會,培養其自信心,激發其學習熱情。
(五)、反饋矯正,注重參與:
為鞏固本節的教學重點我再次給出三道問題:
1)絕對值是7的數有幾個?各是什么?有沒有絕對值是-2的數?
2)絕對值是0的數有幾個?各是什么?
3)絕對值小于3的整數一共有多少個?
先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。
視學生的反饋情況以及剩余時間的多少我還預備了五道課堂升華的思考題,再次強化訓練,啟發學生的思維。
(六)、歸納小結,強化思想:
(七)、布置作業,引導預習:
1、全體學生必做課本習題1、23,4,5,10。
2、選作兩道思考題:
(1)求絕對值不大于2的整數;(2)已知x是整數,且2、5<x<7,求x、
總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。
以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝!
教案模版初中數學篇19
一、課題引入
為了讓學生更好地理解正數與負數的概念,作為教師有必要了解數系的發展.從數系的發展歷程來看,微積分的基礎是實數理論,實數的基礎是有理數,而有理數的基礎則是自然數.自然數為數學結構提供了堅實的基礎.
對于“數的發展”(也即“數的擴充”),有著兩種不同的認知體系.一是數的自然擴充過程,如圖1所示,即數系發展的自然的、歷史的體系,它反映了人類對數的認識的歷史發展進程;另一是數的邏輯擴充過程,如圖2所示,即數系發展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數學家構造的一種邏輯體系,其中綜合反映了現代數學中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數量.這些數量不僅與5、5000等數量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.
為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數、正分數、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數—負數.
我們把所學過的大于零的數,都稱為正數;而且還可以在正數的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數,讀作“正5”.
在正數的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數統稱為負數.“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數量就有了不同的表達方式.
利用正數與負數可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數記作“+2”,把乙隊的凈勝球數記作“-2”.
借助實際例子能夠讓學生較好地理解為什么要引入負數,認識到負數是為了有效表達與實際生活相關的一些數量而引入的一種新數,而不是人為地“硬造”出來的一種“新數”.
三、鞏固練習
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數或負數來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數量,都用正數來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數量則用負數來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數據“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數據“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數分別是主客隊的進球數,例如3∶2表示主隊進3球客隊進2球.
教案模版初中數學篇20
三維目標
一、知識與技能
1.能靈活列反比例函數表達式解決一些實際問題.
2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.
二、過程與方法
1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.
2.體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.
三、情感態度與價值觀
1.積極參與交流,并積極發表意見.
2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.
教學重點
掌握從物理問題中建構反比例函數模型.
教學難點
從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.
教具準備
多媒體課件.
教學過程
一、創設問題情境,引入新課
活動1
問屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.
(1)求I與R之間的函數關系式;
(2)當電流I=0.5時,求電阻R的值.
設計意圖:
運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.
師生行為:
可由學生獨立思考,領會反比例函數在物理學中的綜合應用.
教師應給“學困生”一點物理學知識的引導.
師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.
生:(1)解:設I=kR∵R=5,I=2,于是
2=k5,所以k=10,∴I=10R.
(2)當I=0.5時,R=10I=100.5=20(歐姆).
師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么樣的原理呢?
生:這是古希臘科學家阿基米德的名言.
師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”:若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設計意圖:
物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.
師生行為:
先由學生根據“杠桿定律”解決上述問題.
教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.
教師在此活動中應重點關注:
①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;
②學生能否面對困難,認真思考,尋找解題的途徑;
③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的興趣.
師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據“杠桿定律”有
Fl=1200×0.5.得F=600l
當l=1.5時,F=6001.5=400.
因此,撬動石頭至少需要400牛頓的力.
(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有
Fl=600,
l=600F.
當F=400×12=200時,
l=600200=3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F=600l.
而F≤400×12=200時.
600l≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.
生:還可由函數圖象,利用反比例函數的性質求出.
師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:
用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl(k為常數且k>0)
根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.
師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?
設計意圖:
在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.
師生行為:
由學生先獨立思考,然后小組內討論完成.
教師應給予“學困生”以一定的幫助.
生:解:(1)∵y與x-0.4成反比例,
∴設y=kx-0.4(k≠0).
把x=0.65,y=0.8代入y=kx-0.4,得
k0.65-0.4=0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數關系為y=15x-2
(2)根據題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動4
一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的已知條件求出當密度ρ=1.1kg/m3時二氧化碳氣體的體積V的值.
設計意圖:
進一步體現物理和反比例函數的關系.
師生行為
由學生獨立完成,教師講評.
師:若要求出ρ=1.1kg/m3時,V的值,首先V和ρ的函數關系.
生:V和ρ的反比例函數關系為:V=990ρ.
生:當ρ=1.1kg/m3根據V=990ρ,得
V=990ρ=9901.1=900(m3).
所以當密度ρ=1.1kg/m3時二氧化碳氣體的氣體為900m3.
四、課時小結
活動5
你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解析式,再根據解析式解得.
設計意圖:
這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.
師生行為:
學生可分小組活動,在小組內交流收獲,然后由小組代表在全班交流.
教師組織學生小結.
反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.
板書設計
17.2實際問題與反比例函數(三)
1.
2.用反比例函數的知識解釋:在我們使用撬棍時,為什么動力臂越長越省力?
設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數且k>0).動力和動力臂分別為F,l.則根據杠桿定理,
Fl=k即F=kl(k>0且k為常數).
由此可知F是l的反比例函數,并且當k>0時,F隨l的增大而減小.
活動與探究
學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數關系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數表達式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?
x(m)10203040
y(m)
過程:點A(40,10)在反比例函數圖象上說明點A的橫縱坐標滿足反比例函數表達式,代入可求得反比例函數k的值.
結果:(1)綠化帶面積為10×40=400(m2)
設該反比例函數的表達式為y=kx,
∵圖象經過點A(40,10)把x=40,y=10代入,得10=k40,解得,k=400.
∴函數表達式為y=400x.
(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。
