簡單高一簡單數學教案
教案可以幫助教師評估學生的學習效果和進步情況,從而更好地調整教學策略,提高教學質量和效率。如何才能寫出優秀的簡單高一簡單數學教案?這里給大家分享簡單高一簡單數學教案供大家參考。
簡單高一簡單數學教案篇1
一、教材
首先談談我對教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數學必修2第三章3.1.2的內容,本節課的內容是兩條直線平行與垂直的判定的推導及其應用,學生對于直線平行和垂直的概念已經十分熟悉,并且在上節課學習了直線的傾斜角與斜率,為本節課的學習打下了基礎。
二、學情
教材是我們教學的工具,是載體。但我們的教學是要面向學生的,高中學生本身身心已經趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經非常成熟,能夠有自己獨立的思考,所以應該積極發揮這種優勢,讓學生獨立思考探索。
三、教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據其判定兩條直線的位置關系。
(二)過程與方法
在經歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態度價值觀
在猜想論證的過程中,體會數學的嚴謹性。
四、教學重難點
我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:兩條直線平行與垂直的判定。本節課的教學難點是:兩條直線平行與垂直的判定的推導。
五、教法和學法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用講授法、練習法、小組合作等教學方法。
六、教學過程
下面我將重點談談我對教學過程的設計。
(一)新課導入
首先是導入環節,那么我采用復習導入,回顧上節課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關系呢?
利用上節課所學的知識進行導入,很好的克服學生的畏難情緒。
(二)新知探索
接下來是教學中最重要的新知探索環節,我主要采用講解法、小組合作、啟發法等。
簡單高一簡單數學教案篇2
新學期又開始了,為使今后的工作能更順利的開展,特制定此工作計劃,請領導多多批評指導。
一、教材分析
高一上學期學習歷史必修ⅰ“政治文明歷程”,著重反映人類社會政治領域發展進程中的重要內容。政治活動是人類社會生活的重要組成部分。它與社會經濟、文化活動密切相關,相互作用。了解中外歷重要政治制度、重大事件及重要人物,探討其在人類歷史進程中的作用及其影響,汲取必要的歷史經驗教訓。
二、學生現狀分析
今年任教高一六、七、八、九四個的歷史教學工作。通過初步接觸和了解發現學生歷史學科基礎相當薄弱,缺乏學習興趣,基本的學習方法和習慣都沒有養成,而且對歷史學科一慣當作“副科”,非常不重視。
三、本學期教學目標
1、知識與能力目標:通過學習,了解人類歷重要政治制度、政治事件及其代表人物等基本史實,正確認識歷階級、階級關系和階級斗爭,認識人類社會發展的基本規律。
2、過程與方法:學習搜集歷有關政治活動方面的資料,并能進行初步的歸納與分析;學會從歷史的角度來看待不同政治制度的產生、發展及其歷史影響,理解政治變革是社會歷史發展多種因素共同作用的結果,并能對其進行科學的評價與解釋。
3、情感態度與價值觀:理解從專制到民主、從人治到法治是人類社會一個漫長而艱難的歷史過程,樹立為社會主義政治文明建設而奮斗的人生理想。
四、工作措施
1、強化學生掌握基礎知識的質,提高學生運用知識的水平。
就是要將課標要求的基礎知識記憶牢固,理解準確。要注意研究在復習中怎樣把注重基礎知識的學習和專題問題、熱點問題聯系起來;要研究怎樣整合教材,怎樣加強三個必修模塊內容之間的嫁接與聯系,怎樣整合選修模塊與必修模塊之間的聯系;要研究采取哪些方式方法才能讓學生把主干歷史知識扎扎實實地掌握起來,達到記憶牢固,理解準確,運用靈活。
2、加強對學生分析解決問題的學習能力的培養。
針對前面分析的學生在知識遷移能力、提取有效信息能力、思維能力、審題能力等方面存在的諸多問題,要采取得力措施:
研究怎樣實施問題意識教學,即怎樣在復習教學中滲透問題意識,將教材中陳述性的史實,轉換成問題性的素材,把說史變成問史和疑史,鼓勵學生尋找史實之間的因果轉化關系,把歷史的知識序列變成史實的問題序列。
研究怎樣提高學生理論認識能力,即學會應用辯證唯物主義和歷史唯物主義基本原理分析和解決問題,使學生把理論觀點轉化為認識歷史的思維方法,用以全面地、辯證地分析歷史問題。
研究采取什么措施和方法落實歷史思維能力的培養與訓練,即怎樣把各種能力培養與具體的歷史知識相結合,與一定的方法技巧相結合;怎樣把能力的培養貫穿于教學、測試等各個環節和各種教學活動中,做到能力培養內容化、方法化、經常化,以期切實提高學生解答歷史試題的基本能力。
研究采取那些措施和方法培養學生從材料中提取有效信息回答問題的能力,讓學生做到:能夠正確理解材料信息的含義;能夠準確概括提煉有效信息;能夠結合所學知識解決新問題。
3、加強學生行文答卷的規范性。
初步設想通過老師明確要求和樣卷展覽、個別指導、限期做到等四個環節來落實加強學生行文答卷的規范性的訓練。
通過采取各種有效措施達到三個教學目標:一是放慢速度,夯實基礎;二是理清線索,構建結構;三是注重能力,接軌高考。在今后的教學工作中要以提高課堂教學效益為目的,全面整合教材內容,優化教學模式,以期在提高學生綜合素質的基礎上幫助學生提高歷史學科的學習能力和綜合探究能力。
五、專業成長計劃
本學期繼續努力學習,廣泛涉獵本學科、現代教育技術以及教育教學和學生管理方面的理論,并積極參加各種學習和培訓,對素質教育和高效課堂要有更明確的認識,并積極參加投身教研教改,把成果落實到教學實踐中。
簡單高一簡單數學教案篇3
一、教學目標
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數式的初步經驗,鍛煉抽象思維能力。
3、情感態度與價值觀:學生在獨立思考的過程中,能將生活中的經驗與所學的知識結合起來,形成實事求是的態度以及進行質疑和獨立思考的習慣。
二、教學重難點
重點:理解一元二次方程的意義,能根據題目列出一元二次方程,會將不規則的一元二次方程化成標準的一元二次方程。
難點:找對題目中的數量關系從而列出一元二次方程。
三、教學過程
(一)導入新課
師:同學們我們就要開始學習一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學能告訴我這是誰嗎?
生:老師,這是雷鋒叔叔。
師:對,這是遼寧省撫順市雷鋒紀念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀念他,同學們是不是也要向雷鋒叔叔學習啊?
生:是的老師。
師:可是原來紀念館的工作人員在建造這座雕像的時候曾經遇到了一個問題,也就是圖片下面的這個問題,同學們想不想為他們解決這個問題呢?
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學一元二次方程。
(二)新課教學
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用AC來表示上部,BC來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)
(三)小結作業
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
四、板書設計
五、教學反思
簡單高一簡單數學教案篇4
一、教材分析
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和學生的年齡特征,按照__市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
簡單高一簡單數學教案篇5
教學目標
1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法。
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念。
(2)能從數和形兩個角度熟悉單調性和奇偶性。
(3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度。
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數。減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數。偶函數的定義,函數奇偶性的判定方法,奇函數。偶函數的圖像。
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,二次函數。反比例函數圖象出發,回憶圖象的增減性,從這點感性熟悉出發,通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來。在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。
(2)函數單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律。函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
簡單高一簡單數學教案篇6
高中數學第一冊(上)1.1集合(一)教學案例教學目標:1、理解集合、集合的元素的概念;2、了解集合的元素的三個特性;3、記憶常用數集的表示;4、會判斷元素與集合的關系,
集合(一)教學案例。教學重點:1、集合的概念;2、集合的元素的三個特征性質教學難點:1、集合的元素的三個特性;2、數集與數集的關系課前準備:1、教具準備:多媒體制作數學家康托介紹,包括頭像、生平、對數學發展所作的貢獻;本節課所需的例題、圖形等。2、布置學生預習1.1集合.教學設計:一、[創設情境]多媒體展示激發興趣:為科學而瘋的人——康托托康(Contor,Georg)(1845-1918),俄羅斯—德國數學家、19世紀數學偉大成就之一—集合論的創立人。康托生於俄國聖彼得堡,父母親是丹__人,父親出生於丹__首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的??低凶杂讓祵W有濃厚興趣。23歲獲博士學位,以后一直從事數學教學與研究。他所創立的集合論已被公認為全部數學的基礎。1874年康托的有關無窮的概念,震撼了知識界。康托憑借古代與中世紀哲學著作中關于無限的思想而導出了關于數的本質新的思想模式,建立了處理數學中的無限的基本技巧,從而極大地推動了分析與邏輯的發展。他研究數論和用三角函數地表示函數等問題,發現了驚人的結果:證明有理數是可列的,而全體實數是不可列的。由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為“悖論”),許多大數學家唯恐陷進去而采取退避三舍的態度。在1874—1876年期間,不到30歲的康托向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都“一樣多”,后來幾年,康托對這類“無窮集合”問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論??低械膭撛煨怨ぷ髋c傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托的集合論是一種“疾病”,康托的概念是“霧中之霧”,甚至說康托是“瘋子”.來自數學__們的巨大精神壓力終于摧垮了康托,使他心力交瘁,患了精神__癥,被送進精神病醫院.他在集合論方面許多非常出色的成果,都是在精神病發作的間歇時期獲得的.真金不怕火煉,康托的思想終于大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托的工作“可能是這個代所能夸耀的最巨大的工作。”可是這時康托仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托在一家精神病院去世。今天,我們將學習高中數學第一章集合與簡易邏輯的1.1集合(一),讓我們回顧一下初中涉及到集合的有關知識。二、[復習舊知識]復習提問:1.在初中,我們學過哪些集合?實數集、二元一次方程的解集、不等式(組)的解集、點的集合等。2.在初中,我們用集合描述過什么?角平分線、線段的垂直平分線、圓、圓的內部、圓的外部等。
實數有理數無理數整數分數正無理數負無理數正分數負分數負整數自然數正整數零3.實數的分類3、實數的分類:
實數正實數負實數零
4、以下由學生完成:(1)、把下列各數填入相應的圈內
0、、2.5、、、-6、、8%、19
整數集合分數集合無理數集合
(2).把下列各數填入相應的大括號內1、-10、、、-2、3.6、、—0.1、8、負有理數集合:{}
整數集合:{}
正實數集:{}
無理數集:{}
3.解不等式組(1)2x-3〈5
4.絕對值小于3的整數是—————————————————三、[學習互動]1、觀察下列對象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)與一個角的兩邊距離相等的點;(4)滿足x-3>2的全體實數;(5)本班全體男生;(6)我國古代四大發明;(7)2007年本省高考考試科目;(8)2008年奧運會的球類項目,
《集合(一)教學案例》通過學生觀察以上對象后,教師提問:[集合的概念](1)集合是什么?某些指定的對象集在一起就成為一個集合,簡稱集。(2)什么是集合的元素?集合中的每個對象叫做這個集合的元素。(3)集合、集合的元素怎樣表示?一般用大括號表示集合且常用大寫字母表示;集合中的元素用小寫字母表示。(4)集合中的元素與集合的關系a是集合A的元素,稱a屬于A,記作a∈A;a不是集合A的元素,稱a不屬于A,記作aA。2、探討下列問題(1){1,2,2,3}是含有1個1、2個2、1個3的集合嗎?(2)的科學家能構成一個集合嗎?(3){a,b,c,d}與{b,c,d,a}是否表同一個集合?通過師生共同探討得出下面結論:通過師生共同探討得出結論:[集合中的元素的性質]確定性:集合中的元素必須是確定的。集合的元素的特點互異性:集合中的元素必須是互異的。無序性:集合中的元素是無先后順序的。組成集合的元素可以是:數、圖、人、事物等。[常用數集的表示](1)自然數集:用N表示(2)正整數集:用N﹡或N+表示(3)整數集:用Z表示(4)有理數集:用Q表示(5)實數集:用R表示(正實數集用R__或R+表示)四、[四、[互動參與]例1下面的各組對象能否構成集合是()(A)所有的好人(B)小于2004的實數(C)和2004非常接近的數(D)方程x2-3x+2=0的根例2用符號填空(1)3.14Q(2)πQ(3)0N+(4)0N
32(5)(-2)0N__(6)Q
3232(7)Z(8)—R
五、[分層議練]1、選擇題(1)下列不能形成集合的是()A、所有三角形B、《高一數學》中的所有難題C、大于π的整數D、所以的無理數2、判斷正誤(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,則xN()(3)若xQ,則xR()(4)若xN,則xN+()
常用數集屬于a∈AN、N__(或N+)、Z、Q、R。集合集合的概念元素與集合的關系集合中元素的性質確定性互異性無序性不屬于aA
本節課設計的目的:通過創設情境激發學生的學習興趣,課前預習培養學生的自學能力;多媒體輔助教學提高課堂效益,使教學呈現方式多樣化;探索現代教學手段與高中數學教學的整合。
簡單高一簡單數學教案篇7
一、教材分析及處理
函數是高中數學的重要內容之一,函數的基礎知識在數學和其他許多學科中有著廣泛的應用;函數與代數式、方程、不等式等內容聯系非常密切;函數是近一步學習數學的重要基礎知識;函數的概念是運動變化和對立統一等觀點在數學中的具體體現;函數概念及其反映出的數學思想方法已廣泛滲透到數學的各個領域,《函數》教學設計。
對函數概念本質的理解,首先應通過與初中定義的比較、與其他知識的聯系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數概念.其次在后續的學習中通過基本初等函數,引導學生以具體函數為依托、反復地、螺旋式上升地理解函數的本質。
教學重點是函數的概念,難點是對函數概念的本質的理解。
學生現狀
學生在第一章的時候已經學習了集合的概念,同時在初中時已學過一次函數、反比例函數和二次函數,那么如何用集合知識來理解函數概念,結合原有的知識背景,活動經驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。
二、教學三維目標分析
1、知識與技能(重點和難點)
(1)、通過實例讓學生能夠進一步體會到函數是描述變量之間的依賴關系的重要數學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。不但讓學生能完成本節知識的學習,還能較好的復習前面內容,前后銜接。
(2)、了解構成函數的三要素,缺一不可,會求簡單函數的定義域、值域、判斷兩個函數是否相等等。
(3)、掌握定義域的表示法,如區間形式等。
(4)、了解映射的概念。
2、過程與方法
函數的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:
(1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發現知識,找出不同點與相同點,實現學生在教學中的主體地位,培養學生的創新意識。
(2)、面向全體學生,根據課本大綱要求授課。
(3)、加強學法指導,既要讓學生學會本節知識點,也要讓學生會自我主動學習。
3、情感態度與價值觀
(1)、通過多媒體給出實例,學生小組討論,給出自己的結論和觀點,加上老師的輔助講解,培養學生的實踐能力和和大膽創新意識,教案《《函數》教學設計》。
(2)、讓學生自己討論給出結論,培養學生的自我動手能力和小組團結能力。
三、教學器材
多媒體ppt課件
四、教學過程
教學內容教師活動學生活動設計意圖
《函數》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數應用的廣泛,將同學們的視線引入函數的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數的世界,體現了新課標的理念:從知識走向生活
知識回顧:初中所學習的函數知識(用時兩分鐘)回顧初中函數定義及其性質,簡單回顧一次函數、二次函數、正比例函數、反比例函數的性質、定義及簡單作圖認真聽老師回顧初中知識,發現異同在初中知識的基礎上引導學生向更深的內容探索、求知。即復習了所學內容又做了即將所學內容的鋪墊
思考與討論:通過給出的問題,引出本節課的主要內容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內容無法給出正確答案,需要從新的高度來認識函數結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節主要知識,回顧前一節的集合感念,應用到本節知識,前后聯系、銜接
新知識的講解:從概念開始講解本節知識(用時三分鐘)詳細講解函數的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數概念,由知識講解回到問題身上,解決問題
對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結更好的掌握函數概念,通過問題來更好的掌握知識
函數區間(用時五分鐘)引入函數定義域的表示方法簡潔明了的方法表示函數的定義域或值域,在集合表示方法的基礎上引入另一種方法
注意點(用時三分鐘)做個簡單的的回顧新內容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內容和知識點
習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯系
映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內容做更好的鋪墊
小結(用時五分鐘)簡單講述本節的知識點,重難點做筆記前后知識的連貫,總結,使學生更明白知識點
五、教學評價
為了使學生了解函數概念產生的背景,豐富函數的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數概念的理解也逐層深入,從而準確理解函數的概念。函數引入中的三種對應,與初中時學習函數內容相聯系,這樣起到了承上啟下的作用。這三種對應既是函數知識的生長點,又突出了函數的本質,為從數學內部研究函數打下了基礎。
在培養學生的能力上,本課也進行了整體設計,通過探究、思考,培養了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內在聯系,培養了學生的辨證思維能力;通過實際問題的解決,培養了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養了學生的創新意識與探究能力。
雖然函數概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數概念的本質,達到了課程標準的要求,體現了課改的教學理念。
簡單高一簡單數學教案篇8
教學目標
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
簡單高一簡單數學教案篇9
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
簡單高一簡單數學教案篇10
一、教學過程
1.復習
反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。
求出函數y=x3的反函數。
2.新課
先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象:
教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。
生2:這是y=x3的反函數y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
(學生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家幫他找找原因。
(生1將他的制作過程重新重復了一次。)
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?
(學生再次陷入思考,一會兒有學生舉手。)
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?
(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y=的圖象?
生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。
師:將橫坐標與縱坐標互換?怎么換?
(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)
師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?
(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)
生6:我發現這兩個圖象應是關于某條直線對稱。
師:能說說是關于哪條直線對稱嗎?
生6:我還沒找出來。
(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)
學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。
師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。
(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)
教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。
最后教師與學生一起總結:
點(x,y)與點(y,x)關于直線y=x對稱;
函數及其反函數的圖象關于直線y=x對稱。
二、反思與點評
1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。
2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。
計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。
在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。
當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。
3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。
簡單高一簡單數學教案篇11
一、三維目標:
知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。
過程與方法:通過設置問題情境培養學生判斷、推斷的能力。
情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操.通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的思維品質。
二、學習重、難點:
重點:函數的奇偶性的概念。
難點:函數奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2.分別畫出函數f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
簡單高一簡單數學教案篇12
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節課所學知識進行回顧。
布置作業。
簡單高一簡單數學教案篇13
【內容與解析】
本節課要學的內容有函數的概念指的是函數的概念及符號的理解,理解它關鍵就是能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用。學生已經學過了集合并且初中對函數的概念已經作了介紹,本節課的內容函數的概念就是在此基礎上的發展的。由于它還與基本初等函數和函數模型等內容有必要的聯系,所以在本學科有著很重要的地位,是學習后面知識的基礎,是本學科的核心內容。教學的重點是函數的概念,函數的三要素,所以解決重點的關鍵是通過實例領悟構成函數的三個要素;會求一些簡單函數的定義域和值域。
【教學目標與解析】
1、教學目標
(1)理解函數的概念;
(2)了解區間的概念;
2、目標解析
(1)理解函數的概念就是指能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用;
(2)了解區間的概念就是指能夠體會用區間表示數集的意義和作用;
【問題診斷分析】
在本節課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
【教學過程】
問題1:一枚炮彈發射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的`高度h(單位:m)隨時間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有唯一的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發:在t的變化t按照給定的圖象,都有唯一的一個臭氧層空洞面積S與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養學生的歸納、概況的能力。
問題4:上述三個實例中變量之間的關系都是函數,那么從集合與對應的觀點分析,函數還可以怎樣定義?
4.1在一個函數中,自變量x和函數值y的變化范圍都是集合,這兩個集合分別叫什么名稱?
4.2在從集合A到集合B的一個函數f:A→B中,集合A是函數的定義域,集合B是函數的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個函數由哪幾個部分組成?如果給定函數的定義域和對應關系,那么函數的值域確定嗎?兩個函數相等的條件是什么?
【例題】:
例1求下列函數的定義域
分析:求定義域就是使式子有意義的x的取值所構成的集合;定義域一定是集合!
例2已知函數
分析:理解函數f(x)的意義
例3下列函數中哪個與函數相等?
例4在下列各組函數中與是否相等?為什么?
分析:
(1)兩個函數相等,要求定義域和對應關系都一致;
(2)用x還是用其它字母來表示自變量對函數實質而言沒有影響.
【課堂目標檢1測】
教科書第19頁1、2.
【課堂小結】
1、理解函數的定義,函數的三要素,會球簡單的函數的定義域和函數值;
2、理解區間是表示數集的一種方法,會把不等式轉化為區間。
簡單高一簡單數學教案篇14
本學期我擔任高一的英語教學工作,任教班級分別為高一440班和438班。為了更好的進行教學,明確教學任務,特制定此教學計劃,以促進教學工作。以教學大綱,新課改的具體要求為依據,根據本屆高一學生的具體學情,制定全面的、系統的、針對性強的教學計劃,從高一抓起,充分提高我校學生的英語基礎水平。認真研讀課本,謙虛而積極地向優秀的同行學習,收集相關資料信息,密切關注高考動態對本屆高一學生發展的影響,從而作出最快的調整,使教學工作不偏離方向,有效提高教學質量。聯系學生的實際情況,充分調動學生的學習積極性和自主性,盡努力讓學生主導課堂,教師引導課堂,雙管齊下,扎扎實實學好基礎,并提高學生的綜合素質和解題技巧,以適應新的形勢和要求。
一、學生現狀分析
這2個班級是普通班,兩個班級的平均水平相差不大,底子薄弱的同學比例大。不少同學的學習態度還沒轉變,學習方法也須慢慢糾正。學生中有這樣一種頑劣思想,"現在離高考還早著呢,玩得開心最重要,以后大不了再臨時抱佛腳"。學生上課效率低,作業馬虎甚至不交,課外時間全部放在休閑游戲上,上課睡覺或者無所事事的現象時有發生。還有一些學生則是由于缺乏堅持不懈的毅力,不喜歡背誦、記憶,只滿足于課堂上聽聽課,課后沒有復習、課前沒有預習,導致英語成績提高緩慢。
二、教學措施
1.教學目標:高一年級是高中的重要階段,又是高中三年學習打好基礎的關鍵時期。因此,讓學生在高一階段扎實地掌握基礎對其今后學業發展極其重要。在本學期內,我期望達到以下目標:鞏固擴大基礎知識,培養口頭和書面初步運用英語進行交際的能力,側重培養閱讀能力,發展智力,培養自學能力。協助學生通過學業水平測試。
2.教學方法與措施
(1)幫助學生養成良好的學習習慣,指導他們掌握有效的學習方法。堅持每天朗讀,學會背誦的有效方法;利用每天的零碎時間反復多記憶單詞,學會記憶單詞的多種方法;學會觀察語言現象,總結語言規律(如通過例句總結出詞的詞性,用法等);養成良好的作業習慣,掌握各種解題技巧;堅持預習,鍛煉自學,積極思考,大膽質疑;學會記筆記和整理錯題。
(2)強化詞匯、閱讀訓練。對于詞匯教學,運用詞匯聯想的記憶方法,拓展學習知識面。同時堅持不懈地積累詞匯量,不斷反復,及時鞏固。本學期繼續抓住統編教材的詞匯,同時適當擴大英文報刊的閱讀量,以擴大詞匯量、增強閱讀能力。短文閱讀是吸收信息、學習語言、提高水平的最有效途徑,因此,提高學生的閱讀理解能力是教學的重要目標之一。本學期將有計劃地堅持每周補充一份周報,包含單項選擇,完型填空,閱讀理解和改錯等內容以輔助教學,并且除了配套的練習之外,每周有效選擇課外閱讀文章兩篇,讓學生在廣泛閱讀中提高閱讀理解能力。
(3)堅持對聽力訓練、寫作訓練常抓不懈,對學生平時的學習情況做好記錄與反饋。
(4)適當地調整課堂,增加提問方式,適量地讓學生聽英文歌曲或簡單有趣的英語小故事,以提高學生的學習興趣。改變傳統教學模式,盡量做到讓學生教學生,更多地把課堂時間和空間留給學生。
簡單高一簡單數學教案篇15
一、教材分析
1、教材的地位和作用
(1)本節課主要對函數單調性的學習;
(2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用
2、教材重、難點
重點:函數單調性的定義
難點:函數單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)
二、教學目標
知識目標:
(1)函數單調性的定義
(2)函數單調性的證明
能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:培養學生勇于探索的精神和善于合作的意識
(這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。
(前三部分用時控制在三分鐘以內,可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創設問題,探索新知
緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。
讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。
讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。
3、例題講解,學以致用
例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。
