高一數學教案全集
教案應該突出教學重難點,采用合適的教學方法和手段,幫助學生理解和掌握重點和難點知識。這里分享一些高一數學教案全集下載,供大家寫高一數學教案全集參考。
高一數學教案全集篇1
一、教學目標
1.掌握二次根式的性質
2.能夠利用二次根式的性質化簡二次根式
3.通過本節的學習滲透分類討論的數學思想和方法
二、教學設計
對比、歸納、總結
三、重點和難點
1.重點:理解并掌握二次根式的性質
2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
四、課時安排
1課時
五、教B具學具準備
投影儀、膠片、多媒體
六、師生互動活動設計
復習對比,歸納整理,應用提高,以學生活動為主
高一數學教案全集篇2
一、教學過程
1.復習
反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。
求出函數y=x3的反函數。
2.新課
先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象:
教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。
生2:這是y=x3的反函數y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
(學生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家幫他找找原因。
(生1將他的制作過程重新重復了一次。)
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?
(學生再次陷入思考,一會兒有學生舉手。)
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?
(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y=的圖象?
生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。
師:將橫坐標與縱坐標互換?怎么換?
(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)
師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?
(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)
生6:我發現這兩個圖象應是關于某條直線對稱。
師:能說說是關于哪條直線對稱嗎?
生6:我還沒找出來。
(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)
學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。
師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。
(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)
教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。
最后教師與學生一起總結:
點(x,y)與點(y,x)關于直線y=x對稱;
函數及其反函數的圖象關于直線y=x對稱。
二、反思與點評
1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。
2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。
計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。
在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。
當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。
3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。
高一數學教案全集篇3
目標:
1.讓學生熟練掌握二次函數的圖象,并會判斷一元二次方程根的存在性及根的個數;
2.讓學生了解函數的零點與方程根的聯系;
3.讓學生認識到函數的圖象及基本性質(特別是單調性)在確定函數零點中的作用;
4。培養學生動手操作的能力。
二、教學重點、難點
重點:零點的概念及存在性的判定;
難點:零點的確定。
三、復習引入
例1:判斷方程x2-x-6=0解的存在。
分析:考察函數f(x)=x2-x-6,其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數f(x)的圖像是連續曲線,因此,
點B(0,-6)與點C(4,6)之間的那部分曲線
必然穿過x軸,即在區間(0,4)內至少有點
X1使f(X1)=0;同樣,在區間(-4,0)內也至
少有點X2,使得f(X2)=0,而方程至多有兩
個解,所以在(-4,0),(0,4)內各有一解
定義:對于函數y=f(x),我們把使f(x)=0的實數x叫函數y=f(x)的零點
抽象概括
y=f(x)的圖像與x軸的交點的橫坐標叫做該函數的零點,即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在(a,b)內至少有一個實數解。
f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點
所以求方程f(x)=0的根實際上也是求函數y=f(x)的零點
注意:1、這里所說若f(a)f(b)0,則在區間(a,b)內方程f(x)=0至少有一個實數解指出了方程f(x)=0的實數解的存在性,并不能判斷具體有多少個解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數解;
3、我們所研究的大部分函數,其圖像都是連續的曲線;
4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)
5、缺少條件在[a,b]上是連續曲線則不成立,如:f(x)=1/x,有f(-1)xf(1)0但沒有零點。
四、知識應用
例2:已知f(x)=3x-x2,問方程f(x)=0在區間[-1,0]內沒有實數解?為什么?
解:f(x)=3x-x2的圖像是連續曲線,因為
f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,
所以f(-1)f(0)0,在區間[-1,0]內有零點,即f(x)=0在區間[-1,0]內有實數解
練習:求函數f(x)=lnx+2x-6有沒有零點?
例3判定(x-2)(x-5)=1有兩個相異的實數解,且有一個大于5,一個小于2。
解:考慮函數f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在(-,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數解,且一個大于5,一個小于2。
練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。
五、課后作業
p133第2,3題
高一數學教案全集篇4
【內容與解析】
本節課要學的內容有函數的概念指的是函數的概念及符號的理解,理解它關鍵就是能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用。學生已經學過了集合并且初中對函數的概念已經作了介紹,本節課的內容函數的概念就是在此基礎上的發展的。由于它還與基本初等函數和函數模型等內容有必要的聯系,所以在本學科有著很重要的地位,是學習后面知識的基礎,是本學科的核心內容。教學的重點是函數的概念,函數的三要素,所以解決重點的關鍵是通過實例領悟構成函數的三個要素;會求一些簡單函數的定義域和值域。
【教學目標與解析】
1、教學目標
(1)理解函數的概念;
(2)了解區間的概念;
2、目標解析
(1)理解函數的概念就是指能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用;
(2)了解區間的概念就是指能夠體會用區間表示數集的意義和作用;
【問題診斷分析】
在本節課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
【教學過程】
問題1:一枚炮彈發射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的`高度h(單位:m)隨時間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有唯一的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發:在t的變化t按照給定的圖象,都有唯一的一個臭氧層空洞面積S與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養學生的歸納、概況的能力。
問題4:上述三個實例中變量之間的關系都是函數,那么從集合與對應的觀點分析,函數還可以怎樣定義?
4.1在一個函數中,自變量x和函數值y的變化范圍都是集合,這兩個集合分別叫什么名稱?
4.2在從集合A到集合B的一個函數f:A→B中,集合A是函數的定義域,集合B是函數的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個函數由哪幾個部分組成?如果給定函數的定義域和對應關系,那么函數的值域確定嗎?兩個函數相等的條件是什么?
【例題】:
例1求下列函數的定義域
分析:求定義域就是使式子有意義的x的取值所構成的集合;定義域一定是集合!
例2已知函數
分析:理解函數f(x)的意義
例3下列函數中哪個與函數相等?
例4在下列各組函數中與是否相等?為什么?
分析:
(1)兩個函數相等,要求定義域和對應關系都一致;
(2)用x還是用其它字母來表示自變量對函數實質而言沒有影響.
【課堂目標檢1測】
教科書第19頁1、2.
【課堂小結】
1、理解函數的定義,函數的三要素,會球簡單的函數的定義域和函數值;
2、理解區間是表示數集的一種方法,會把不等式轉化為區間。
高一數學教案全集篇5
一、指導思想
以校本教研為基礎,以市第__屆學科帶頭人評選活動為契機,以學科基地為陣地,以網絡教研為形式,以提高課堂教學的有效性為突破口,以深入推進課程改革為重點,以促進學生全面發展和教師專業成長為目標,進一步全面深化教學改革,全面推進素質教育,全面提升學科品位,全面提高學科質量。
二、工作要點
1、扎實開展校本教研。通過“骨干引路”、“自我反思”、“同伴協助”、“聯片互動”、“專業扶持”等形式,在全體小學數學教師中廣泛、深入、持久、扎實、有效地開展新課程下的校本教研活動。通過研究,促進課改理念在課堂教學中的運用,促進課堂教學有效性的提升,促進全體教師的專業發展,尤其是促進農村小學教師的專業發展。
2、認真抓好教學視導。對全市小學的進行認真視導,通過聽課、評課、講座、問卷、教學常規檢查、組織教師和學生座談等形式,總結教學經驗,發現和解決教學問題,推動教學研究,提高教學質量。
3、建立學科教研基地。充分利用學科教研基地,廣泛、深入開展數學新課程領域的相關問題研究和探討,推動全市小學數學教學研究工作。本學年研究重點為:如何推進網上學習和網絡教研。
4、切實改革考試評價。要指導學校建立新的評價考試制度,大力改革考試內容和形式,使之符合新課程的新要求。要通過考試,發現學生的潛在能力與不足,判斷學生的發展方向,促進學生的知識與技能,過程與方法,情感態度價值觀和培養創新精神與實踐能力的全面和諧發展。
5、加強農村課改指導。本著求真務實的態度,研究在鄉村教師、教學設施條件較差的情況下,如何有效地促進課程教學改革,推進鄉村課程改革順利實施。
6、著力網研骨干培訓。在培訓對象上,要加強對各校網研骨干的培訓;在培訓內容上,要結合教學改革的需要組織培訓;在培訓的方式上,要多采用參與式、互動式等方式。要切實通過培訓,提高網研興趣和能力。
7、認真組織學科帶頭人評比活動。要嚴格按照市教育局和教科院要求,做好市第__屆小學數學學科帶頭人的評選工作。
8、抓好學科專業委員會建設。本學年,要召開學科專業委員會年會,并組織學科專業委員會開展主題研究論壇,深入研究教學改革的難點、熱點問題。
高一數學教案全集篇6
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數的認識,了解依賴關系中有的是函數關系,有的則不是函數關系.
2.培養廣泛聯想的能力和熱愛數學的態度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
教學難點:培養廣泛聯想的能力和熱愛數學的態度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發現哪些函數關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數關系。
2.構成函數關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。
3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數概念
1.初中關于函數的定義:
2.從集合的觀點出發,函數定義:
給定兩個非空數集A和B,如果按照某個對應關系f,對于A中的任何一個數x,在集合B中都存在確定的數f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數,記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數的定義域,集合{f(x)︱x∈A}叫作函數的值域。習慣上我們稱y是x的函數。
定義域,值域,對應法則
4.函數值
當x=a時,我們用f(a)表示函數y=f(x)的函數值。
高一數學教案全集篇7
教學類型:探究研究型
設計思路:通過一系列的猜想得出德.摩根律,但是這個結論僅僅是猜想,數學是一門科學,所以需要論證它的正確性,因此本節通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.
教學過程:
一、片頭
內容:現在讓我們一起來學習《集合的運算——自己探索也能發現的&39;數學規律(第二講)》。
二、正文講解
1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發現?!?/p>
上節課老師和大家學習了集合的運算,得出了一個有趣的規律。課后,你舉例驗證了這個規律嗎?
那么,這個規律是偶然的,還是一個恒等式呢?
2.規律的驗證:
試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
3.抽象概括:通過我們的觀察和驗證,我們發現這個規律是一個恒等式。
而這個規律就是180年前的英國數學家德摩根發現的。
為了紀念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發現這么偉大的數學規律。
4.例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算
三、結尾
通過這在道題的解答,我們發現德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學習中,勇于探索,發現更多有趣的規律。
高一數學教案全集篇8
教學準備
教學目標
知識目標
等差數列定義等差數列通項公式
能力目標
掌握等差
數列定義等差數列通項公式
情感目標
培養學生的觀察、推理、歸納能力
教學重難點
教學重點
等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察——發現
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1。判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
高一數學教案全集篇9
各位評委、老師,大家好!
今天我要進行說課的框題是《價格變動的影響》。下面,我將從對教材的理解、對學生的分析、教法和學法、教學過程和板書設計幾個方面來具體闡述。
一、首先,我們來認識教材、把握教材
1、說本框的地位和作用
《價格變動的影響》是人教版教材高一政治必修1第一單元第2課第2個框題,該框的內容實質上講的是價值規律的作用,是第一單元《生活與消費》的重點和核心。學生在前面已經學習的貨幣的有關知識和價格變動的原因,為本框題的學習作了鋪墊,本框題正是承接這兩部分(貨幣的有關知識和價格變動的原因)內容,同時為第3課《多彩的消費》的學習打下基礎,因此具有承上啟下的作用,在經濟常識中具有不容忽視的重要的地位。
2、說教學目標
關于本課,課程標準是這樣要求的:歸納影響商品價格變化的`因素,理解價格變動的意義,評價商品和服務的變化對我們生活的影響。
在認真解讀課程標準的前提下,根據學生的實際情況,我設立以下教學目標:
(1)知識方面:通過本框學習,使學生懂得價格變動與商品需求量之間的一般規律;面對價格的變動,知道不同商品的需求彈性不同,以及價格變動對相關商品需求量的影響。
(2)能力方面:通過本框學習,使學生能夠運用價格變動對生活的影響分析相關的生活現象及解決實際生活的實踐能力,培養學生透過現象看本質的能力,從而提高學生參與經濟生活的水平。
(3)情感態度價值觀:通過學習,使學生關心生活中的小事,認識價格的變動,增強參與經濟生活的自主性,樹立競爭意識,以適應激烈的市場競爭。
3、說教學重難點
重點:價格變動對人們生活和生產的影響
難點:價格變動對替代品與互補品的影響
二、說對學生的分析
高一學生對經濟生活的內容很感興趣,對經濟生活中的現象有一定程度的關注和了解,有利于教學活動的開展,但我的學生主要來自農村,知識面有待拓展,表達能力也有待提高,因此我選擇與生活有密切關聯的、貼近學生實際的事例為主進行分析,以便激發學生的學習興趣和參與熱情,提高學生的積極性。
三、說教法和學法
(1)接下來說說我將采用的教學方法
以多媒體為輔助教學手段,采用情景探究法。第一步,創設情景,提出問題;第二步,小組討論,自主探究;第三步,師生互動,建構知識。
(2)接下來再說說我對學生學法的指導
本著以學生為本的理念,著眼于學生的終身發展,在傳授知識的同時,更加注重學習的過程,更加注重能力的培養,因而我采用了新課程提倡的自主學習、合作學習和探究學習。
四、下面我重點介紹一下我的教學過程的設計
1、創設情景,導入新課
俗話說:好的開端是成功的一半。因此在導入新課時如果能創設學生感興趣的情境就能把學生的注意力集中起來,調動學生的積極性,引起學生的求知欲。
所以我首先在導入時創設情境:
情景設置一:《美國人夢想的破滅》這個情景講述的是美國人生來就有這樣一個夢想——有房有車。房子要大大的,前有花園,后有游泳池;汽車要豪華加長型,看著氣派,跑起來威風,駕駛起來也舒適。然而,美國人的夢想正在破滅。由于次貸危機,即購房貸款不能按時繳納而面臨被銀行拍賣,這使前一個夢想破滅;而后一個夢想也瀕臨滅亡!原因何在?石油價格的上漲(多媒體同時顯示:國際油價變動情況簡介:20__年28$/桶20__年120$/桶20__年82$/桶)。美國人生活區和工作地有時距離上百公里,驅車往返使美國人不堪負重。還有部分美國人不得不辭去在外地的工作轉而就近就業,導致部分公司缺少員工,企業生產無法正常進行,為了留住人才,公司增加了外地工人的補貼,使企業的成本增加。由此可見,商品價格的漲跌對人們生活有重大影響,甚至影響人們的生活方式,進而影響企業的生產。
設計此例目的有二:一是調動學生的積極性,學生對美國任何風吹草動都感興趣,特別是不利的事情;二是此例在第3課《影響消費水平的因素》可繼續使用,達到一材多用的目的。
在此基礎上自然過渡到本框內容:既然價格變動對人們的生活生產有這么重大的影響,那就讓我們共同了解和學習價格變動的影響(在黑板上同時板書)。
2、在推進新課時我創設這樣一個情景——《請給老師提點建議》
情景設置二:《請給老師提點建議》:"老師現在需要一個交通工具,可以選擇的有小汽車、摩托和電動車。我該怎么選擇呢?"
之所以設計這樣的案例,因為他們會覺得:老師也需要我的幫助?繼而會以幫助老師為榮,積極的"獻計獻策",從而活躍課堂氣氛,進一步調動學生的積極性。
學生此時會迫不及待地幫老師進行選擇,大部分學生會鼓動老師選擇小汽車,首先調動起學生的參與熱情。
我繼續介紹相關情況:"家用小汽車售價一般在5到6萬元,摩托車售價在5000元上下,電動車大約20__元。"小汽車老師是買不起的,因為價格太高了。我想其他人也會限于價格而購買者只能是一部分人。這說明了價格影響人們的需求量。價格高,人們減少對它的購買;如果汽車價格降至和摩托車差不多呢?(學生會哄笑"我們都買一輛",有學生會提出異議:不可能,價值決定價格)學生會七嘴八舌地表達自己的想法,而這,正是我要達到的效果。
我會在此基礎上反問:"同學們想一想,如果大米的價格也大幅下降,人們對它的需求會不會驟然增多呢?"學生自然知道不會。如果大米的價格大幅度上漲,會減少對它的需求量嗎?同樣不會。于是可以得出結論:價格變動會引起需求量變動,但不同商品的需求量對價格變動的反應程度是不同的。價格變動對生活必需品需求量的影響比較小,對高檔耐用品需求量的影響比較大。
"不降價我就不買了,那我只能在后兩種中選擇了".
同時提出兩個問題:以多媒體方式顯示
◆我能不能兩個都買?為什么?
◆我如果不能都去選擇,如果從經濟實用的角度考慮,我該選哪一個?受什么影響呢?
請你提出中肯的建議,并說出選擇的理由。
要求學生用3分鐘時間閱讀教材P15第3~5自然段。
同時用多媒體出示相關內容:"摩托車每百公里耗油量一般3升左右,每升約6元,電動車每百公里耗電量約15度,每度0.56元。"
學生通過對問題的思考與回答,結合課本自覺,他們會幫老師做出正確的選擇:只能買一個——電動車。而通過理由的闡述,學生明白了摩托車和電動車是互為替代品,而對于兩者進行選擇時還得考慮相關的商品,就懂得了還受油價和電價的制約,了解了什么是互補商品,較易得出相關商品價格的變動對消費者需求的影響:一種商品價格上升,需求量會減少,會導致它的互補商品的需求量也減少;一種商品價格上升,需求量減少,會導致它的替代商品的需求量增加。這樣學生就知道了,消費者對既定商品的需求不僅受該商品自身價格變動的影響,而且受相關商品價格變動的影響。
這就是價格變動對生活的影響,對生產經營有什么影響呢?
情景設置三:《大蒜價格的變動》。這是日常生活當中常見的,學生有深切的感受,會說出價格:5、6元一斤!引導學生思考大蒜價格的變化情況,學生說過之后用多媒體出示大蒜價格近四年來的變化。07——09.4月間,價格在0.2元/斤,09年5月份以來至今逐漸漲到了5、6元/斤,時達到8.5元/斤。
現在思考:
◆大蒜價格的漲落是怎樣影響蒜農生產活動的?
◆如果我們設想,大蒜價格今后會怎樣變化,原因是什么?蒜農該如何應對這種變化?
讓學生前后四人為一組,用3到5分鐘邊閱讀教材P16邊進行討論分析。由于學生主要來自農村,對此比較熟悉,甚至自己家就種植過大蒜或正在種植,有切身感受,不難得出結論:面對商品價格變動,生產者一般會調節生產,提高勞動生產率,生產適銷對路的高質量產品。即價格變動對生產經營的影響。
之所以這樣設計,因為這部分知識是本節課要掌握的重點所在,與學生生活實際結合的比較緊密,理論難度又不大,這樣由他們自已討論得出知識,可以增強他們的自信心,充分調動他們學習的主動性和積極性,使他們真正成為學習的主人,同時在自主探究與小組討論的過程中,讓他們學著如何自主探究學習,如何與人合作學習,最終使他們真正會學習。
在這里,我對課本上的價格與供求關系圖有不同意見。我覺得如果把"價格變動"放在兩頭,效果會更好,也更直觀的表現是由于價格的變動引起生產規模的變化。(同時用多媒體展示這一變化)
3、當堂處理一些練習題,以練習鞏固學生剛掌握的知識及對知識的理解程度。在這一環節中,我會利用學生手中已有的資料,處理隨堂訓練。大約5——8分鐘。
4、最后我預留出5分鐘時間給學生自由提問,可以是本節有關內容的理解,也可以是有關的生活中遇到的不太理解的經濟現象,我將力求給學生一個合理的解釋,如果我也不明白,將如實告訴學生,我會下去查資料,我也要繼續學習,提高自己,在下節上課時給予解決。
這所以這樣設計,是要給學生一個表達自己的機會,鍛煉發言的能力,同時給學生質疑與拓展開放的時空。我相信學生:我給學生一個天地,他們還我一個驚喜!
5、作業布置:做《優化探究》最后一個主觀題。
五板書設計:
各位領導、老師,我今天的說課到此結束,請各位老師多提意見,謝謝!
高一數學教案全集篇10
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.
2.學法
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.
3.預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
高一數學教案全集篇11
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1.說出下列圓的方程
⑴圓心(3,-2)半徑為5
⑵圓心(0,3)半徑為3
2.指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3.判斷3x-4y-10=0和x2+y2=4的位置關系
4.圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)
練習:
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業P811,2,3,4
高一數學教案全集篇12
一、課標要求:
理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.
二、知識與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結論
5、化歸思想:
表示p等價于q,等價命題可以進行相互轉化,當我們要證明p成立時,就可以轉化為證明q成立;
這里要注意原命題逆否命題、逆命題否命題只是等價形式之一,對于條件或結論是不等式關系(否定式)的命題一般應用化歸思想.
6、數形結合思想:
利用韋恩圖(即集合的包含關系)來判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎訓練:
1、設命題若p則q為假,而若q則p為真,則p是q的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
2、設集合M,N為是全集U的兩個子集,則是的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
3、若是實數,則是的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
四、例題講解
例1已知實系數一元二次方程,下列結論中正確的是()
(1)是這個方程有實根的充分不必要條件
(2)是這個方程有實根的必要不充分條件
(3)是這個方程有實根的.充要條件
(4)是這個方程有實根的充分不必要條件
A.(1)(3)B.(3)(4)C.(1)(3)(4)D.(2)(3)(4)
例2(1)已知h0,a,bR,設命題甲:,命題乙:且,問甲是乙的()
(2)已知p:兩條直線的斜率互為負倒數,q:兩條直線互相垂直,則p是q的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
變式:a=0是直線與平行的條件;
例3如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s
的充分條件,那么命題p是命題q的條件;命題s是命題q的條件;命題r是命題q的條件.
例4設命題p:4x-31,命題q:x2-(2a+1)x+a(a+1)0,若﹁p是﹁q的必要不充分條件,求實數a的取值范圍;
例5設是方程的兩個實根,試分析是兩實根均大于1的什么條件?并給予證明.
五、課堂練習
1、設命題p:,命題q:,則p是q的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
2、給出以下四個命題:①若p則q②若﹁r則﹁q③若r則﹁s
④若﹁s則q若它們都是真命題,則﹁p是s的條件;
3、是否存在實數p,使是的充分條件?若存在,求出p的取值范圍;若不存在說明理由.
六、課堂小結:
七、教學后記:
高三班學號姓名日期:月日
1、AB是AB=B的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
2、是的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
3、2x2-5x-30的一個必要不充分條件是()
A.-
4、2且b是a+b4且ab的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
5、設a1、b1、c1、a2、b2、c2均為非零實數,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么是M=N的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
6、若命題A:,命題B:,則命題A是B的條件;
7、設條件p:x=x,條件q:x2-x,則p是q的條件;
8、方程mx2+2x+1=0至少有一個負根的充要條件是;
9、關于x的方程x2+mx+n=0有兩個小于1的正根的一個充要條件是;
10、已知,求證:的充要條件是;
11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實數m的取值范圍。
12、已知關于x的方程(1-a)x2+(a+2)x-4=0,aR,求:
(1)方程有兩個正根的充要條件;
(2)方程至少有一正根的充要條件.
高一數學教案全集篇13
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。
二.教學內容: 1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數_,在集合B中都有確定的數()f_和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:
(),yf__A
其中,_叫自變量,_的取值范圍A叫作定義域(domain),與_的值對應的y值叫函數值,函數值的集合{()|}f__A?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(_)”是函數符號,可以用任意的字母表示,如“y=g(_)”;
②函數符號“y=f(_)”中的f(_)表示與_對應的函數值,一個數,而不是f乘_. 2.構成函數的三要素 定義域、對應關系和值域。 3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素_,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區間及寫法:
設a、b是兩個實數,且a
(1) 滿足不等式a_b??的實數_的集合叫做閉區間,表示為[a,b];
(2) 滿足不等式a_b??的實數_的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
高一數學教案全集篇14
課題:
人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》
教材分析:
本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。
學情分析:
在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。
教學目標:
(一)教學知識點:
1.對數的概念。
2.對數式與指數式的互化。
(二)能力目標:
1.理解對數的概念。
2.能夠進行對數式與指數式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯系與相互轉化,
2.用聯系的觀點看問題。
教學重點與難點:
重點是對數定義,難點是對數概念的理解。
高一數學教案全集篇15
教學目標
1.使學生了解反函數的概念;
2.使學生會求一些簡單函數的反函數;
3.培養學生用辯證的觀點觀察、分析解決問題的能力。
教學重點
1.反函數的概念;
2.反函數的求法。
教學難點
反函數的概念。
教學方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數的定義、記法、習慣記法。(記作A);
第二張:本課時作業中的預習內容及提綱。
教學過程
(I)講授新課
(檢查預習情況)
師:這節課我們來學習反函數(板書課題)§2.4.1反函數的概念。
同學們已經進行了預習,對反函數的概念有了初步的了解,誰來復述一下反函數的定義、記法、習慣記法?
生:(略)
(學生回答之后,打出幻燈片A)。
師:反函數的定義著重強調兩點:
(1)根據y=f(x)中x與y的關系,用y把x表示出來,得到x=φ(y);
(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應。
師:應該注意習慣記法是由記法改寫過來的。
師:由反函數的定義,同學們考慮一下,怎樣的映射確定的函數才有反函數呢?
生:一一映射確定的函數才有反函數。
(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數值;后者y是自變量,x是函數值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請同學們談一下,函數y=f(x)與它的反函數y=f–1(x)兩者之間,定義域、值域存在什么關系呢?
生:(學生作答,教師板書)函數的定義域,值域分別是它的反函數的值域、定義域。
師:從反函數的概念可知:函數y=f(x)與y=f–1(x)互為反函數。
從反函數的概念我們還可以知道,求函數的反函數的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫成y=f–1(x),即對調x=f–1(y)中的x、y。
(3)指出反函數的定義域。
下面請同學自看例1
(II)課堂練習課本P68練習1、2、3、4。
(III)課時小結
本節課我們學習了反函數的概念,從中知道了怎樣的映射確定的函數才有反函數并求函數的反函數的方法步驟,大家要熟練掌握。
(IV)課后作業
一、課本P69習題2.41、2。
二、預習:互為反函數的函數圖象間的關系,親自動手作題中要求作的圖象。
板書設計
課題:求反函數的方法步驟:
定義:(幻燈片)
注意:小結
一一映射確定的
函數才有反函數
函數與它的反函
數定義域、值域的關系。
