高一教案數學
教案包括教材簡析和學生分析、教學目的、重難點、教學準備、教學過程及練習設計等。那要怎么寫高一教案數學呢?這里提供一些高一教案數學,希望對大家能有所幫助。
高一教案數學篇1
教學準備
教學目標
知識目標
等差數列定義等差數列通項公式
能力目標
掌握等差
數列定義等差數列通項公式
情感目標
培養學生的觀察、推理、歸納能力
教學重難點
教學重點
等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察——發現
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1。判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
高一教案數學篇2
教學目標
1.通過教學使學生理解的概念,推導并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.
3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.
教學重點,難點
重點、難點是的定義的歸納及通項公式的推導.
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)
(板書)
1.的定義(板書)
根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.
請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:
2.對定義的認識(板書)
(1)的首項不為0;
(2)的每一項都不為0,即 ;
問題:一個數列各項均不為0是這個數列為的什么條件?
(3)公比不為0.
用數學式子表示的定義.
是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?
式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.的通項公式(板書)
問題:用 和 表示第 項 .
①不完全歸納法
②疊乘法
,… , ,這 個式子相乘得 ,所以 .
(板書)(1)的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
(板書)(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).
這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.
三、小結
1.本節課研究了的概念,得到了通項公式;
2.注意在研究內容與方法上要與等差數列相類比;
3.用方程的思想認識通項公式,并加以應用.
四、作業 (略)
五、板書設計
1.等比數列的定義
2.對定義的認識
3.等比數列的通項公式
(1)公式
(2)對公式的認識
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個厚度超過了世界的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).
高一教案數學篇3
本學期,我擔任高一(25)、(26)、(27)、(28)四個班的化學教育教學工作。
一、指導思想
認真學習教育部《基礎教育課程改革綱要》和《普通高中研究性學習實施建議》,認真學習《普通高中化學課程標準》,明確當前基礎教育課程改革的方向,深刻理解課程改革的理念,全面推進課程改革的進行。
在教學中,貫徹基礎教育課程改革的改變課程過于注重知識傳授的傾向,強調形成積極主動的學習態度,使獲得基礎知識與基本技能的過程同時成為學會學習和形成正確價值觀的過程;改變課程內容&39;難、繁、偏、舊&39;和過于注重書本知識的現狀,加強課程內容與學生生活以及現代社會和科技發展的聯系,關注學生的學習興趣和經驗,精選終身學習必備的基礎知識和技能;改變課程實施過于強調接受學習、死記硬背、機械訓練的現狀,倡導學生主動參與、樂于探究、勤于動手,培養學生搜集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力的課程觀。
二、教學要求
1、認真研究當前教育改革發展趨勢,轉變傳統教學觀念,注重學生能力培養,以培養學生創新意識和綜合能力為重點,重視科學態度和科學方法的教育,寓思想教育與課堂教學之中,促進學生健康發展,深化教育改革。
2、加強教學研究,提高教學質量。提倡以科研帶教學,以教學促科研,使教學工作課題化。教師要努力提高教科研的意識和能力,積極探討科學合理、適應性強的實驗方案,改革課堂教學方法,積極進行研究性學習的探索,不斷提高教學水平和專業知識水平,開拓新的課堂教學模式。在備課活動中,要把課堂教學改革,德育教育放在首位。
在教學目標、方法、內容的確定、作業的布置與批改、單元的測試與評估、課內外輔導活動中要從有利于培養學生高尚道德情操,創新精神和實踐能力去思考設計。
3、做好調查研究,真正了解高一文、理科學生的實際情況。要認真研究學法,加強對學生學習方法的指導,加強分類指導,正確處理對不同類學校和不同類學生的教學要求,注重提高學生學習化學的興趣。在教學中,努力發揮學生的主體作用和教師的指導作用,提高教學效率。提倡向40分鐘要質量,反對加班加點磨學生的低劣教學方法。
4、注重知識的落實,加強雙基教學,加強平時的復習鞏固,加強平時考查,通過隨堂復習、單元復習和階段復習及不同層次的練習等使學生所學知識得以及時鞏固和逐步系統化,在能力上得到提高。
5、加強實驗研究,重視實驗教學,注重教師實驗基本功培訓,倡導改革實驗教學模式,增加學生動手機會,培養學生實踐能力。
6、要發揮群體優勢,發揮教研備課組的作用,依靠集體力量,在共同研究的基礎上設計出豐富多彩的教學活動。
高一教案數學篇4
1.教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用.
2.設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標.
3.教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題.
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用.
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美.
4.重點難點
重點:任意角三角函數的定義.
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透.
5.學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念.在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構.
6.教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構.這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用.
7.學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標.
8.教學設計(過程)
一、引入
問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問題3:當角clip_image002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?
二、原有認知結構的改造和重構
問題4:當角clip_image002[1]是銳角時,clip_image004,線段OP的長度clip_image006這幾個量之間有何關系?
學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數
學生閱讀教材,并思考:
問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?
學生討論并回答
三、新概念的形成
問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?
學生回答,并閱讀教材,得到任意角三角函數的定義.并思考:
問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?
展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的
并類比函數的研究方法,得出任意角三角函數的定義域和值域。
四、概念的運用
1.基礎練習
①口算clip_image008的值.
②分別求clip_image010的值
小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值
ⅱ)誘導公式(一)
③若clip_image012,試寫出角clip_image002[2]的值。
④若clip_image015,不求值,試判斷clip_image017的符號
⑤若clip_image019,則clip_image021為第象限的角.
例1.已知角clip_image002[3]的終邊過點clip_image024,求clip_image026之值
若P點的坐標變為clip_image028,求clip_image030的值
小結:任意角三角函數的等價定義(終邊定義法)
例2.一物體A從點clip_image032出發,在單位圓上沿逆時針方向作勻速圓周運動,若經過的弧長為clip_image034,試用clip_image034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變為clip_image006[1],如何用clip_image034[2]來表示物體A所在位置的坐標?
小結:可以采用三角函數模型來刻畫圓周運動
五、拓展探究
問題8:當角clip_image002[4]的終邊繞頂點O作圓周運動時,角clip_image002[5]的終邊與單位圓的交點clip_image039的坐標clip_image041clip_image043與角clip_image002[6]之間還可以建立其它函數模型嗎?
思考:引入平面直角坐標系后,我們可以把圓周運動用數來刻畫,這是將“形”轉化成為“數”;角clip_image002[7]正弦值是一個數,你能借助平面直角坐標系和單位圓,用“形”來表示這個“數”嗎?角clip_image002[8]余弦值、正切值呢?
六、課堂小結
問題9:請你談談本節課的收獲有哪些?
七、課后作業
教材P21第6、7、8題
高一教案數學篇5
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
