七年級數學拓展教案
教案可以幫助教師更好地預測和解決問題,以避免課堂上出現不可預料的突發情況。寫好七年級數學拓展教案要注意什么?小編給大家分享七年級數學拓展教案,希望對大家有所幫助。
七年級數學拓展教案篇1
教學目標
1、知識與技能
會利用絕對值比較兩個負數的大小
2、過程與方法
利用絕對值概念比較有理數的大小,培養學生的邏輯思維能力
3、情感、態度與價值觀
敢于面對數學活動中的困難,有學好數學的自信心
教學重點難點
重點:利用絕對值比較兩個負數的大小
難點:利用絕對值比較兩個異分母負分數的大小
教與學互動設計
(一)創設情境,導入新課
投影你能比較下列各組數的大小嗎?
(1)│-3│與│-8│
(2)4與-5
(3)0與3
(4)-7和0
(5)0.9和1.2
(二)合作交流,解讀探究
討論交流由以上各組數的大小比較可見:正數都大于0,0都大于負數,正數都大于負數
思考若任取兩個負數,該如何比較它的大小呢?
點撥若-7表示-7℃,-1表示-1℃,則兩個溫度誰高誰低?
【總結】兩個負數,絕對值大的反而小,或說,兩個負數絕對值小的反而大
注意
①比較兩個負數的大小又多了一種方法,即:兩個負數,絕對值大的.反而小
②異號的兩數比較大小,要考慮它們的正負;同號兩數比較大小,要考慮先比較它們的絕對值
③在數軸上表示有理數,它們從左到右的順序也就是從小到大的順序,即:左邊的數總比右邊的數要小,即:利用數軸來比較有理數的大小。
七年級數學拓展教案篇2
教學目標:
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系.
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力.
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣.
教學重點難點:
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題.
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題.
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業.
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片.
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形.
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項.
第四環節 探索三角形三邊關系
七年級數學拓展教案篇3
一.教學目標
(1) 使學生進一步理解并掌握判定兩條直線平行的方法;
(2) 了解邏輯推理過程.
二.教學重點與難點
重點:判定兩條直線平行方法的應用;
難點:邏輯推理過程.
三.教學過程
復習提問:
1.判定兩條直線平行的方法有哪些?
2.如圖(1)
(1) 如果∠1=∠4,根據_________________,可得AB∥CD;
(2) 如果∠1=∠2,根據_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根據______________,可得AB∥CD .
3.如圖(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新課:
例1 在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?
分析:垂直總與直角聯系在一起,我們學過哪些判斷兩條直線平行的方法?
答:這兩條直線平行.
如圖所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定義)
∴b∥c(同位角相等,兩直線平行)
思考:
這是小明同學自己制作的英語抄寫紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?
例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度數;
(2) FC與AD平行嗎?為什么?
鞏固練習
1. 教科書19頁練習
2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?
3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問ED與CF平行嗎?
4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.
作業:教科書19頁習題5.2第7、8題
七年級數學拓展教案篇4
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
七年級數學拓展教案篇5
教學目標:了解總體、個體、樣本及樣本容的概念以及抽樣調查的意義,明確在什么情況下采用抽樣調查或全面調查,進一步熟悉對數據的收集、整理、描述和分析。
教學重點:對概念的理解及對數據收集整理。
教學難點:總體概念的理解和隨機抽樣的合理性。
教學過程:
一、情景創設,引入新課
上節課我們對全班同學對自己所喜愛的學科進行了調查,那么如果要對某校20__名學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,怎樣進行調查?
二、新課
1.抽樣調查的意義
在上述問題中,由于學生人數比較多,全面調查花費的時間長,消耗的人力、物力大,因此需要尋求既省時又省力又能解決問題的方法,這就是抽樣調查。
抽樣調查:抽取一部分對象進行調查的方法,叫抽樣調查。
2.總體、個體、樣本、樣本容量的意義
總體:所要考察對象的全體。
個體:總體的每一個考察對象叫個體。
樣本:抽取的部分個體叫做一個樣本。
樣本容量:樣本中個體的數目。
3.抽樣的注意事項
①抽樣調查要具有廣泛性和代表性,即樣本容量要恰當.樣本容量過少,那么不能很好地反映總體的情況,比如要調查20__名學生對電視節目的喜愛情況,若抽取的樣本容量為幾名學生就不能反映20__名學生的喜愛情況;如果抽取的學生人數過多,必然花費大量的時間、精力,達不到省時省力的目的.再如要調查60歲以上的老人的生病情況,在醫院去抽取一些60歲以上的住院病人,它又不具有代表性,則應從60歲以上的老人冊中任意抽取部分老人的生病情況來反映總體的60歲老人的生病情況,才能達到目的.
②抽取的樣本要有隨機性.為了使樣本能較好地反映總體的情況,除了有合適的樣本容量外,抽取時還要盡量使每一個個體都有相等的機會被抽到,所謂隨機就是機會相等.例如在20__名學生的注冊學號中,隨意抽取100個學號,調查這些學號對應的100名學生.當然還可以在上學或放學時,在學校門口隨機進行調查;或則每隔10個人調查一個,直到調查滿確定的樣本容量.
總體說來抽樣調查最大的優點就是在抽樣過程中避免了人為的干擾和偏差,因此隨機抽樣是最科學、應用最廣泛的抽樣方法,一般情況下,樣本容量越大,估計精確度就越高.
下面是某同學抽取樣本數量為100的調查節目統計表:
表中的數據信息也可以用條形統計圖或扇形統計圖來描述。
七年級數學拓展教案篇6
一:教材分析:
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節的重點和難點,同時也是本章節的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養他們對數學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續教學內容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(A)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
(B)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關系;
(2)找出相等關系后不會列方程;
(3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發式教學的原則
教學的理論依據是:
1:必須先明確根據應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有_千克面粉”寫成“設原來有_”。另外,在列方程中,各代數式的單位應該是相同的,如例1中,代數式“_字串7”“—15%_”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。
4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。
5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區別或最佳列法,以開闊學生的思路。
四:教學程序:
(一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業五個部分。
(二):教學簡要過程:
1:復習提問:
(1):什么叫做等式?
(2):等式與方程之間有哪些關系?
(3):求_的15%的代數式。
(4):敘述代數式與方程的區別。
(理由是:通過復習加深學生對等式,方程,代數式之間關系的理解,有利于學生熟練正確根據題意列出一元一次方程,從而有利降低本節的難度。)
2:導入講授新課:
(1):教具:
一塊小黑板,抄212例1題目及相對應的空表格。
左邊右邊
(2):新課引述:
(3):講述課文212例1:
(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據題目關系,切勿盲目性)通過理解啟發學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養學生這種發散思維能力。)
指導學生設原來重量為_千克。這里分析等式左邊:原來重量為_千克,運出重量為15%_千克,把以上填入表格左邊。字串7分析等式右邊:剩余重量為42500千克,填入表格右邊。
(目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數和列代數式,有利于降低列方程解應用題的難度)
把以上左邊和右邊的代數式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。
同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。
結合解題過程向學生介紹一元一次應用題解法的一般步驟:
課本215黑體字
3:課堂練習:
課文216練習1,2題
(目的是:讓學生通過適當的模仿例題的解題思想方法從而加深對本課的內容的理解掌握。)
4:新課鞏固:
學生對本節內容進行要小結:
列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。
(目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)
5:作業布置:
課文221習題4-4(1)A組1,2,3題
(目的:在于檢驗學生對本節內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)
五:板書設計:
4_4一元一次方程的應用:
例題:小黑板出示例1題目解:設原來有_千克面粉,那么運
相等關系:原來重量—運出重量=剩余重量出了15%_千克,依題意,得
等式左邊:等式右邊:_—15%_=42500
原來重量為_千克,剩余重量為42500千克。解這個方程:
運出重量為15%_千克。85/100__=42500
解一元一次方程的一般步驟:_=50000(千克)
小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。
七年級數學拓展教案篇7
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.
難點:正確理解有理數與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節課所要學習的內容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數的點:
例2 指出上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.
五、作業
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
課堂教學設計說明
從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.教學中,的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的.例如,向學生提問:在上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等.
七年級數學拓展教案篇8
一、教學目標:
⑴在具體情景中了解余角與補角,懂得余角和補角的性質,通過練習掌握余角和補角的概念及性質,并能運用它們解決一些簡單的實際問題。
⑵經歷觀察、操作、推理、交流等活動,發展學生的幾何概念,培養學生的推理能力和表達能力。
⑶體驗數學知識的發生、發展過程,敢于面對數學活動中的困難,建立學好數學的自信心。
二、教學重點、難點:
余角與補角的性質
三、教學過程:
復習、引入:
⑴復習角的定義。你知道有哪些特殊的角?
⑵用量角器量一量圖中每組兩個角的度數,并求出它們的和。
你有什么發現?
新課:
由學生的發現,給出余角和補角的定義(文字敘述)。
并且用數學符號語言進行理解。
問題1:如何求一個角的.余角和補角。
①∠1的余角:90°-∠1
②∠α的補角:180°-∠α
練習:填表(求一個角的余角、補角)
拓廣:觀察表格,你發現α的余角和α的補角有什么關系?
如何進行理論推導?
結論:α的補角比α的余角大90°
α一定是銳角
鈍角沒有余角,但一定有補角。
七年級數學拓展教案篇9
教學目標:
1、使學生在現實情境中初步認識負數,了解負數的作用,感受運用負數的需要和方便。
2、使學生知道正數和負數的讀法和寫法,知道0既不是正數,又不是負數。正數都大于0,負數都小于0。
3、使學生體驗數學和生活的密切聯系,激發學生學習數學的興趣,培養學生應用數學的能力。
教學重點:
初步認識正數和負數以及讀法和寫法。
教學難點:
理解0既不是正數,也不是負數。
教學具準備:
多媒體課件、溫度計、練習紙、卡片等。
教學過程:
一、游戲導入(感受生活中的相反現象)
1、游戲:我們來玩個游戲輕松一下,游戲叫做《我反我反我反反反》。游戲規則:老師說一句話,請你說出與它相反意思的話。
①向上看(向下看)
②向前走200米(向后走200米)
③電梯上升15層(下降15層)。
2、下面我們來難度大些的,看誰反應最快。
①我在銀行存入了500元(取出了500元)。
②知識競賽中,五(1)班得了20分(扣了20分)。
③10月份,學校小賣部賺了500元。(虧了500元)。
④零上10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游,11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預報。(天氣預報片頭)
二、教學例1
1、認識溫度計,理解用正負數來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現在你能看出南京是多少攝氏度嗎?(是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
(2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結合課件,突出上海的氣溫在零刻度線以上)。
(3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
(4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
①上海的氣溫比0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的4℃也就是+4℃。(板書)
負號能不能省略不寫?為什么?
②北京的氣溫比0℃低,是零下4攝氏度。我們可以用—4℃來表示零下4攝氏度(板書—4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
(5)小結:通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數可以來表示零上溫度,用—4這樣的數可以表示零下溫度。
2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預報,將你聽到城市的最低和溫度記錄下來。
4、小結:通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學習珠峰、吐魯番盆地的海拔表達方法(P4第2題)
1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關的。最近經國家測繪局公布了珠峰的最新海拔高度。老師把有關網頁帶來了。(課件出現網頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的海拔圖。(動態演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導學生交流,回答珠穆朗瑪峰比海平面高8844。43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
(1)交流:珠穆朗瑪峰的海拔可以記作:+8844。43米或8844。43米。
吐魯番盆地的海拔可以記作:—155米。(板書)
(2)小結:以海平面為界線,+8844。43米或8844。43米這樣的數可以表示海平面以上的高度,—155米這樣的數可以表示海平面以下的高度。
四、小組討論,歸納正數和負數。
1、通過剛才的學習,我們收集到了一些數據(課件顯示)我們可以用這些數來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數,它們一樣嗎?你們想幫它們分分類嗎?
2、學生交流、討論。
3、指出:因為+8844。43也可以寫成8844。43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導學生爭論,各自發表意見)
①如果都同意分三類的,老師可以出難題:我覺得0可以分在4它們一類啊,你們怎么來說服我?
②如果有學生發表分三類的,有的分兩類的,可以引導他們互相爭論。
4、小結:什么是正數、負數?
師:(結合圖)我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負幾表示。0是正負數的分界點,把正數和負數分開了,它誰都不屬于。但對于正數和負數來說,它卻必不可少。我們把以前學過的,象+4、16、3/8、0。5、+8844。43等這樣的數叫做正數;象—4、—155等這樣的數我們叫做負數;而0既不是正數,也不是負數。(板書)這節課我們就和大家一起來認識正數和負數。(板書:認識正數和負數)
五、聯系生活,鞏固練習
1、練習一第2、3題
2、你知道嗎:水沸騰時的溫度是__。水結冰時的溫度是__。地球表面的最低溫度是。
3、討論生活中的正數和負數
(1)存折:這里的—800表示什么意思?(以原來的錢為標準,取出了800元記作—800;存入了1200元記作1200元,還可以記作+1200元)
(2)電梯:這里的1和—1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,—1就表示地下一層)。老師現在要到33層應該按幾啊?要到地下3層呢?
六、課堂小結
這節課我們一起認識了正數和負數。在我們的生活中,零攝氏度以上和零攝氏度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數和負數來表示。
七年級數學拓展教案篇10
【學習目標】:
1、掌握正數和負數概念;
2、會區分兩種不同意義的量,會用符號表示正數和負數;
3、體驗數學發展是生活實際的需要,激發學生學習數學的興趣。
【重點難點】:正數和負數概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數和分數夠用了嗎?有沒有比0小的數?如果有,那叫做什么數?
二、自主學習
1、正數與負數的產生
(1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子:。
(2)負數的產生同樣是生活和生產的需要
2、正數和負數的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規定為負的。正的量就用小學里學過的數表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
(2)活動:兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數表示.
(3)閱讀P2的內容
3、正數、負數的概念
1)大于0的數叫做,小于0的數叫做。
2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【課堂練習題】:
1.P3第1,2題(直接做在課本上)。
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數:?13,?2,3.14,+3065,0,-239;54
則正數有_____________________;負數有____________________。
4.下列結論中正確的是________()
A.0既是正數,又是負數
C.0是最大的負數
【要點歸納】:
正數、負數的概念:
(1)大于0的數叫做,小于0的數叫做。
(2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數分別表示潛水艇和鯊魚的高度。
【課后作業】P5第1、2題
七年級數學拓展教案篇11
[教學目標]
1.了解多邊形及有關概念,理解正多邊形及其有關概念.
2.區別凸多邊形與凹多邊形.
[教學重點、難點]
1.重點:
(1)了解多邊形及其有關概念,理解正多邊形及其有關概念.
(2)區別凸多邊形和凹多邊形.
2.難點:
多邊形定義的準確理解.
[教學過程]
一、新課講授
投影:圖形見課本P84圖7.3一l.
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學邊看、邊議.
在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?
(1)它們在同一平面內.
(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)
2.多邊形的邊、頂點、內角和外角.
多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
3.多邊形的對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的`對角線.
讓學生畫出五邊形的所有對角線.
4.凸多邊形與凹多邊形
看投影:圖形見課本P85.7.3—6.
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.
5.正多邊形
由正方形的特征出發,得出正多邊形的概念.
各個角都相等,各條邊都相等的多邊形叫做正多邊形.
二、課堂練習
課本P86練習1.2.
三、課堂小結
引導學生總結本節課的相關概念.
四、課后作業
課本P90第1題.
備用題:
一、判斷題.
1.由四條線段首尾順次相接組成的圖形叫四邊形.()
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()
4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()
二、填空題.
1.連接多邊形的線段,叫做多邊形的對角線.
2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.
3.各個角,各條邊的多邊形,叫正多邊形.
三、解答題.
1.畫出圖(1)中的六邊形ABCDEF的所有對角線.
2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?
3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?
4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?
七年級數學拓展教案篇12
教學過程
一、目標展示
二、情景導入。
裝修工人正在向墻上釘木條,如果木條b與墻壁邊緣垂直,那么木條a與墻壁邊緣所夾角為多少度時,才能使木條a與木條b平行?
要解決這個問題,就要弄清楚平行的判定。
三、直線平行的條件
以前我們學過用直尺和三角尺畫平行線,如圖(課本P13圖5、2—5)在三角板移動的過程中,什么沒有變?
三角板經過點P的邊與靠在直尺上的邊所成的角沒有變。
∠1與∠2是三角板經過點P的邊與靠在直尺上的邊所成的角移動前后的位置,顯然∠1與∠2是同位角并且它們相等,由此我們可以知道什么?
兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。
簡單地說:同位角相等,兩條直線平行。
符號語言:∵∠1=∠2∴AB‖CD、
如圖(課本P145、2—7),你能說出木工用圖中這種叫做角尺的工具畫平行線的道理嗎?
用角尺畫平行線,實際上是畫出了兩個直角,根據“同位角相等,兩條直線平行。”,可知這樣畫出的就是平行線。
學習目標一:了解平行線的概念、平面內兩條直線的兩種位置關系。
題組一:
1、叫做平行線。
如圖:a與b互相平行,記作,a。
2、在同一平面內,兩條直線的位置關系b只有與兩種。
3、下列生活實例中:
(1)交通道路上的斑馬線;
(2)天上的彩虹;
(3)閱兵隊的縱隊;
(4)百米跑道線,屬于平行線的有。
學習目標二:掌握兩個平行公理;會用三角尺和直尺過已知直線外一點畫這條直線的平行線。
題組二:
4、通過畫圖和觀察,可得兩個平行公理:
①、經過點,一條直線平行于已知直線;
②、如果兩條直線都與第三條直線平行,那么這兩條直線,符號表達式:若b‖a,c‖a,則。
5、在同一平面內直線a與b滿足下列條件,寫出其對應的位置關系:
①、a與b沒有公共點,則a與b;
②、a與b有且只有一個公共點,則a與b;
③、a與b有兩個公共點,則a與b;
6、過一點畫已知直線的平行線有()
A、有且只有一條;B、有兩條;C、不存在;D、不存在或只有一條
教學設計
1、落實教學常規,踐行學校《教師日常教學行為要求》。
2、優化教學策略,老師要真正尊重學生的學習主體地位,提升課堂教學的有效性。提倡“學先教后”,讓學生“先看、先想、先說、先做”,老師依學定教,點拔引領,讓學生在不斷的“思考、交流、展示、應用”中內悟知識。提倡“當堂訓練”,在教學設計中,要將運用知識解決問題形成能力的環節,當堂落實。力爭當堂完成“雙基”任務。
七年級數學拓展教案篇13
一、知識與能力
理解有理數的概念,懂得有理數的兩種分類方法:會判別一個有理數是整數還是分數,是正數、負數還是零。
二、過程與方法
經歷對有理數進行分類的探索過程,初步感受分類討論的思想。
三、情感態度與價值觀
通過對有理數的學習,體會到數學與現實世界的緊密聯系。
教學重難點及突破
在引入了負數后,本課對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節課的學習,使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備
用電腦制作動畫體現有理數的分類過程。
教學過程
四、課堂引入
1、我們把小學里學過的數歸納為整數與分數,引進了負數以后,我們學過的數有哪些?將如何歸類?
2.舉例說明現實中具有相反意義的量。
3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區別。
七年級數學拓展教案篇14
一、教學目標
1、通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。
2、能用適當的圖形和語言表示自己的思考結果。
二、教學重點和難點
本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。
三、教學手段
引導活動討論
引導:意在教師講解七巧板的歷史,七巧板制作的方法。
活動:人人參與制作七巧板,拼擺七巧板的圖案。
討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。
四、教學方法
啟發式教學
五、教學過程
1創設情景,引入新課
先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。
2合作交流,探索新知
利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。
(1)你的拼圖用了什么形狀的板?你想表現什么?
(2)在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。
(3)在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。
通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。
3范例教學
介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的&39;圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。
4反饋練習
由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。
5歸納小結
通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。
六、練習設計
利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。
七、板書設計
4.7有趣的七巧板
(一)知識回顧
(二)觀察發現
(三)例題解析
(四)課堂練習練習設計
(五)課堂小結
七年級數學拓展教案篇15
相反數
教學目標:
1.借助數軸了解相反數的概念,知道互為相反數的位置關系.
2.給一個數,能求出它的相反數.
教學重點:理解相反數的意義.
教學難點:理解和掌握雙重符號簡化的規律.
教與學互動設計:
(一)創設情境,導入新課
活動請一個學生到講臺前面對大家,向前走5步,向后走5步.
交流如果向前走為正,那向前走5步與向后走5步分別記作什么?
(二)合作交流,解讀探究
1.觀察下列數:6和-6,2和-2,7和-7,和-,并把它們在數軸上標出.
想一想(1)上述各對數有什么特點?
(2)表示這四對數的點在數軸上有什么特點?
(3)你能夠寫出具有上述特點的n組數嗎?
觀察像這樣只有符號不同的兩個數叫相反數.
互為相反數的兩個數在數軸上的對應點(0除外)是在原點兩旁,并且與原點距離相等的兩個點.即:我們把a的相反數記為-a,并且規定0的相反數就是零.
總結在正數前面添上一個“-”號,就得到這個正數的相反數,是一個負數;把負數前的“-”號去掉,就得到這個負數的相反數,是一個正數.
2.在任意一個數前面添上“-”號,新的數就是原數的相反數.如-(+5)=-5,表示+5的相反數為-5;-(-5)=5,表示-5的相反數是5;-0=0,表示0的相反數是0.
(三)應用遷移,鞏固提高
【例1】填空
(1)-5.8是的相反數,的相反數是-(+3),a的相反數是;a-b的相反數是,0的相反數是.
(2)正數的相反數是,負數的相反數是,的相反數是它本身.
【例2】下列判斷不正確的有()
①互為相反數的兩個數一定不相等;②互為相反數的數在數軸上的點一定在原點的兩邊;③所有的有理數都有相反數;④相反數是符號相反的兩個點.
A.1個B.2個C.3個D.4個
【例3】化簡下列各符號:
(1)-[-(-2)];(2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n個負號).
【歸納】化簡的規律是:有偶數個負號,結果為正;有奇數個負號,結果為負.
【例4】數軸上A點表示+4,B、C兩點所表示的數是互為相反數,且C到A的距離為2,則點B和點C各對應什么數?
(四)總結反思,拓展升華
【歸納】(1)相反數的概念及表示方法.
(2)相反數的代數意義和幾何意義.
(3)符號的化簡.
(五)課堂跟蹤反饋
夯實基礎
1.判斷題
(1)-3是相反數.()
(2)-7和7是相反數.()
(3)-a的相反數是a,它們互為相反數.()
(4)符號不同的兩個數互為相反數.()
2.分別寫出下列各數的相反數,并把它們在數軸上表示出來.
1,-2,0,4.5,-2.5,3
3.若一個數的相反數不是正數,則這個數一定是()
A.正數B.正數或0
C.負數D.負數或0
4.一個數比它的相反數小,這個數是()
A.正數B.負數
C.非負數D.非正數
5.數軸上表示互為相反數的兩個點之間的距離為4,則這兩個數是.
提升能力
6.若a與a-2互為相反數,則a的相反數是.
7.已知有理數m、-3、n在數軸上位置如圖所示,將m、-3、n的相反數在數軸上表示出來,并將這6個數用“<”連接起來.
