七年級數學教案電子版
通過編寫教案,教師可以將教學計劃、教學重點、難點、教學方法等組織起來,形成完整的教學內容體系。七年級數學教案電子版要怎么寫?接下來給大家帶來七年級數學教案電子版,方便大家學習。
七年級數學教案電子版篇1
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
七年級數學教案電子版篇2
一.教學目標:
1.認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養學生的探索能力。
3.情感目標:
1)培養學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二.教學重難點
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
三.教學過程
(一)創設情景,引入課題
1.本班共有40人,請問能確定男女生各幾人嗎?為什么?
(1)如果設本班男生_人,女生y人,用方程如何表示?(_+y=40)
(2)這是什么方程?根據什么?
2.男生比女生多了2人。設男生_人,女生y人.方程如何表示?_,y的值是多少?
3.本班男生比女生多2人且男女生共40人.設該班男生_人,女生y人。方程如何表示?
兩個方程中的_表示什么?類似的兩個方程中的y都表示?
像這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
(設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學)
(二)探究新知,練習鞏固
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]
(2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。
①_2+y=0②y=2_+4③y+?_④_=2/y+1⑤(_+y)/3-2=0
(設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數的思考”,進而完善血生對二元一次方程概念的理解。)
2.二元一次方程組的解的概念
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
方程_+y=0的解,方程2_+3y=2的解,方程組的解。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知是方程組的解,求a,b的值。
(三)合作探索,嘗試求解
現在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數_,y,試找出方程組的解.
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
一般思路:由一個方程取適當的_y的值,代到另一個方程嘗試.
(設計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數學活動的經驗)
2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了_盒,三星乒乓球買了y盒,請根據問題中的條件列出關于_、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
3.例已知方程3_+2Y=10
⑴當_=2時,求所對應的Y的值;
⑵取一個你自己喜歡的數作為_的值,求所對應的Y的`值;
⑶用含_的代數式表示Y;
⑷用含Y的代數式表示_;
⑸當_=-2,0時,所對應的Y值是多少;
(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程。)
(四)課堂小結,布置作業
1.這節課學哪些知識和方法?
2.你還有什么問題或想法需要和大家交流?
3.教材P82
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環環相扣,層層遞進;第二是能力培養線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
七年級數學教案電子版篇3
[教學目標]
1. 理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2. 掌握點到直線的距離的概念,并會度量點到直線的距離。
3. 掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一. 復習提問:
1、 敘述鄰補角及對頂角的定義。
2、 對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作 ,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1 過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中 (我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2 連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點 P到直線l的距離。
例1
(1)AB與AC互相垂直;
(2)AD與AC互相垂直;
(3)點C到AB的垂線段是線段AB;
(4)點A到BC的距離是線段AD;
(5)線段AB的長度是點B到AC的距離;
(6)線段AB是點B到AC的距離。
其中正確的有( )
A. 1個 B. 2個
C. 3個 D. 4個
解:A
例2 如圖,直線AB,CD相交于點O,
解:略
例3 如圖,一輛汽車在直線形公路AB上由A
向B行駛,M,N分別是位于公路兩側的村莊,
設汽車行駛到點P位置時,距離村莊M最近,
行駛到點Q位置時,距離村莊N最近,請在圖中公路AB上分別畫出P,Q兩點位置。
練習:
1.
2.教材第9頁3、4
教材第10頁9、10、11、12
小結:
1. 要掌握好垂線、垂線段、點到直線的距離這幾個概念;
2. 要清楚垂線是相交線的特殊情況,與上節知識聯系好,并能正確利用工具畫出標準圖形;
3. 垂線的性質為今后知識的學習奠定了基礎,應該熟練掌握。
作業:教材第9頁5、6.
七年級數學教案電子版篇4
《1.2有理數》教學設計
【學習目標】:
1、掌握有理數的概念,會對有理數按一定標準進行分類,培養分類能力;
2、了解分類的標準與集合的含義;
3、體驗分類是數學上常用的處理問題方法;
【學習重點】:正確理解有理數的概念
【學習難點】:正確理解分類的標準和按照一定標準分類
《1.2.1有理數》同步練習含答案
5.對-3.14,下面說法正確的是(B)
A.是負數,不是分數
B.是負數,也是分數
C.是分數,不是有理數
D.不是分數,是有理數
《1.2有理數》同步練習含答案解析
8.如果a與1互為相反數,則a=()
A.2B.﹣2C.1D.﹣1
【考點】絕對值;相反數.
【分析】根據互為相反數的定義,知a=﹣1,從而求解.
互為相反數的定義:只有符號不同的兩個數叫互為相反數.
【解答】解:根據a與1互為相反數,得
a=﹣1.
所以a=1.
故選C.
【點評】此題主要是考查了相反數的概念和絕對值的性質.
9.若1﹣a=a﹣1,則a的取值范圍是()
A.a>1B.a≥1C.a<1D.a≤1
【考點】絕對值.
【分析】根據1﹣a=a﹣1得到1﹣a≤0,從而求得答案.
【解答】解:∵1﹣a=a﹣1,
∴1﹣a≤0,
∴a≥1,
故選B.
【點評】本題考查了絕對值的求法,解題的關鍵是了解非正數的絕對值是它的相反數,難度不大.
七年級數學教案電子版篇5
教學目標
1、知識與技能。
①能根據一個數的絕對值表示距離,初步理解絕對值的概念,能求一個數的絕對值。
②通過應用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法
經歷絕對值的代數定義轉化成數學式子的過程中,培養學生運用數學轉化思想指導思維活動的能力。
3、情感、態度與價值觀
①通過解釋絕對值的幾何意義,滲透數形結合的.思想。
②體驗運用直觀知識解決數學問題的成功。
教學重點難點
重點:給出一個數,會求它的絕對值。
難點:絕對值的幾何意義、代數定義的導出。
教與學互動設計
(一)創設情境,導入新課
活動:請兩同學到講臺前,分別向左、向右行3米。
交流:
①他們所走的路線相同嗎?
②若向右為正,分別可怎樣表示他們的位置?
③他們所走的路程的遠近是多少?
(二)合作交流,解讀探究
觀察出示一組數6與—6,3。5與—3。5,1和—1,它們是一對互為________,它們的__________不同,__________相同。
總結:例如6和—6兩個數在數軸上的兩點雖然分布在原點的兩邊,但它們到原點的距離相等,如果我們不考慮兩點在原點的哪一邊,只考慮它們離開原點的距離,這個距離都是6,我們就把這個距離叫做6和—6的絕對值。
絕對值:在數軸上表示數a的點與原點的距離叫做a的絕對值,記作│a│。
想一想—3的絕對值是什么?
七年級數學教案電子版篇6
教學目標
1,掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2,了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3,體驗分類是數學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類
知識重點正確理解有理數的概念
教學過程(師生活動)設計理念
探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出)。
問題1:觀察黑板上的9個數,并給它們進行分類。
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵。
例如,
對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’。
按照書本的說法,得出“整數”“分數”和“有理數”的概念
看書了解有理數名稱的由來。
“統稱”是指“合起來總的名稱”的意思。
試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的)分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流。
2,教科書第10頁練習。
此練習中出現了集合的概念,可向學生作如下的說明。
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集。類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號。
思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
也可以教師說出一些數,讓學生進行判斷。
集合的概念不必深入展開。
創新探究問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。
有理數這個分類可視學生的程度確定是否有必要教學。
應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結與作業
課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業
1,必做題:教科書第18頁習題1.2第1題
2,教師自行準備
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
七年級數學教案電子版篇7
1.2一元一次不等式組的解法
2.2二元一次方程組的解法
2.3二元一次方程組的應用(1)
第10教案
教學目標
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
教學重點
1.列二元一次方程組解簡單問題。
2.徹底理解題意
教學難點
找等量關系列二元一次方程組。
教學過程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元。回家路上,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學們,小軍能猜出來嗎?
二、建立模型。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
三、練習。
1.根據問題建立二元一次方程組。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求_、的方程,
是二元一次方程。求a、b的值。
2.P38練習第1題。
四、小結。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
五、作業。
P42。習題2.3A組第1題。
后記:
2.3二元一次方程組的應用(2)
第11教案
教學目標
1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數學的應用價值。
教學重點
根據實際問題列二元一次方程組。
教學難點
1.找實際問題中的相等關系。
2.徹底理解題意。
教學過程
一、引入。
本節課我們繼續學習用二元一次方程組解決簡單實際問題。
二、新課。
例1.小琴去縣城,要經過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?
探究:1.你能畫線段表示本題的數量關系嗎?
2.填空:(用含S、V的代數式表示)
設小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習。
1.建立方程模型。
(1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度。
(2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.P38練習第2題。
3.小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。
四、小結。
本節課你有何收獲?
五、作業。
七年級數學教案電子版篇8
【教學目標】
知識與技能:了解并掌握數據收集的基本方法。
過程與方法:在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀:體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的&39;對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
(3)某種玉米種子的發芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
七年級數學教案電子版篇9
課型:新授課備課人:徐新齊審核人:霍紅超
學習目標
1.通過動手觀察、操作、推斷、交流等數學活動,進一步發展空間觀念毛
2.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角
重點、難點
重點:鄰補角、對頂角的概念,對頂角性質與應用.
難點:理解對頂角相等的性質的探索.
教學過程
一、復習導入
教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.
學生欣賞圖片,閱讀其中的文字.
師生共同總結:我們生活的世界中,蘊涵著大量的相交線和平行線.本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質,研究平行線的性質和平行的判定以及圖形的平移問題.
二、自學指導
觀察剪刀剪布的過程,引入兩條相交直線所成的角
握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刃之間的角邊相應變小.如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刃之間的角也相應變大.
三、問題導學
認識鄰補角和對頂角,探索對頂角性質
(1).學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配共能組成幾對角?各對角的位置關系如何?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流.
∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長線.
∠AOC和∠BOD有公共的頂點O,而是∠AOC的兩邊分別是∠BOD兩邊的反向延長線.
(2).學生用量角器分別量一量各個角的度數,以發現各類角的度數有什么關系,學生得出有"相鄰"關系的兩角互補,"對頂"關系的兩角相等.
(3).概括形成鄰補角、對頂角概念.
有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.
如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一角兩邊的反向延長線,那么這兩個角叫對頂角.
四、典題訓練
1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數.
2.:判斷下列圖中是否存在對頂角.
小結
自我檢測
一、判斷題:
1.如果兩個角有公共頂點和一條公共邊,而且這兩角互為補角,那么它們互為鄰補角.()
2.兩條直線相交,如果它們所成的鄰補角相等,那么一對對頂角就互補.()
二、填空題:
1.如圖1,直線AB、CD、EF相交于點O,∠BOE的對頂角是_______,∠COF的鄰補角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,則∠BOC=_________.
(1)(2)
2.如圖2,直線AB、CD相交于點O,∠COE=90°,∠AOC=30°,∠FOB=90°,則∠EOF=________.
三、解答題:
1.如圖,直線AB、CD相交于點O.
(1)若∠AOC+∠BOD=100°,求各角的度數.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度數.毛
2.兩條直線相交,如果它們所成的一對對頂角互補,那么它的所成的各角的度數是多少?
初中七年級下冊數學教案:有序數對
有序數對
課型:新授備課人:霍紅超審核人:霍紅超
學習目標
1.理解有序數對的應用意義,了解平面上確定點的常用方法
2.培養用數學的意識,激發學習興趣.
學習重點:理解有序數對的意義和作用
學習難點:用有序數對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數據找到位置的。
你能舉出生活中利用數據表示位置的例子嗎?
二.概念確定
有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)
利用有序數對,可以很準確地表示出一個位置。
1.在教室里,根據座位圖,確定數學課代表的位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km處。
例2如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
[鞏固練習]
1.如圖是某城市市區的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2.如圖,馬所處的位置為(2,3).
(1)你能表示出象的位置嗎?
(2)寫出馬的下一步可以到達的位置。
[小結]
1.為什么要用有序數對表示點的位置,沒有順序可以嗎?
2.幾種常用的表示點位置的方法.
[作業]
必做題:教科書44頁:1題
七年級數學教案電子版篇10
一、有理數的意義
1.有理數的分類
知識點:大于零的數叫正數,在正數前面加上“﹣”(讀作負)號的數叫負數;如果一個正數表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3, ,5.2也可寫作+3,+ ,+5.2;零既不是正數,也不是負數。
2.數軸
知識點:數軸是數與圖形結合的工具;數軸:規定了原點、正方向和單位長度的直線;數軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數軸的根本依據;數軸的作用:1)形象地表示數(因為所有的有理數都可以用數軸上的點表示,以后會知道數軸上的每一個點并不都表示有理數),2)通過數軸從圖形上可直觀地解釋相反數,幫助理解絕對值的意義,3)比較有理數的大小:a)右邊的數總比左邊的數大,b)正數都大于零,c)負數都小于零,d)正數大于一切負數
3. 相反數
知識點: 只有符號不同的兩個數互為相反數;在數軸上表示互為相反數的兩個點到原點的距離相等且分別在原點的兩邊;規定:0的相反數是0。
4. 絕對值
知識點: 一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作∣a∣;絕對值的意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,即若a>0,則∣a∣=a. 若a=0,則∣a∣=0. 若a<0,則∣a∣=﹣a ;絕對值越大的負數反而小;兩個點a與b之間的距離為:∣a-b∣。
二、有理數的運算
1. 有理數的加法
知識點:有理數的加法法則:1)同號兩數相加,取相同的符號,并把絕對值相加;2)異號兩數相加,①絕對值相等時,和為零(即互為相反數的兩個數相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3)一個數和0相加仍得這個數。
加法交換律:a+b=b+a; 加法結合律:a+b+c=a+(b+c)
多個有理數相加時,把符號相同的數結合在一起計算比較簡便,若有互為相反的數,可利用它們的和為0的特點。
2. 有理數的減法
知識點:有理數的減法法則:減去一個數等于加上這個數的相反數,即 a-b=a+(-b)。
注意:運算符號“+”加號、“-”減號與性質符號“+”正號、“-”負號統一與轉化,如a-b中的減號也可看成負號,看作a與b的相反數的和:a+(-b);一個數減去0,仍得這個數;0減去一個數,應得這個數的相反數。
3. 有理數的加減混合運算
知識點:有理數的加減法混合運算可以運用減法法則統一成加法運算;加減法混合運算統一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。
4. 有理數的乘法
知識點:乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數和0相乘都得0。
幾個不等于0的數相乘,積的符號由負因數的個數決定;當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。幾個數相乘,有一個因數為0,積就為0。
乘法交換律:ab=ba 乘法結合律:abc=a(bc) 乘法分配律:a(b+c)=ab+bc
5. 有理數的除法
知識點:除法法則1:除以一個數等于乘上這數的倒數,即a÷b= =a? (b≠0即0不能做除數)。
除法法則2:兩數相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數都得0。
倒數:乘積是1的兩數互為倒數,即a? =1(a≠0),0沒有倒數。
注意:倒數與相反數的區別
6. 有理數的乘方
知識點:乘方:求n個相同因數的積的運算。乘方的結果叫冪,an中,a叫做底數,n叫做指數。
乘方的符號法則:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;0的任何次冪都為0。
7. 有理數的混合運算
知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。
技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。
【鞏固練習1】一.選擇題
1. 關于數“0”,以下各種說法中,錯誤的是 ( )
A. 0是整數 B. 0是偶數 C. 0是自然數 D. 0既不是正數也不是負數
2. –3.782: ( )
A. 是負數,不是分數 B. 不是分數,是有理數 C. 是分數,不是有理數 D. 是分數,也是負數
二、將下列各數填入相應的集合中。 ,-1,12,0,-3.01,0.62,-15,- ,180,-42,-45%,π,1。
整數:______________________ 自然數:___________________________
正數:______________________ 負數: ___________________________
偶數:______________________ 奇數: ___________________________
分數:______________________ 非負數:___________________________
非負整數: _________________ 非正分數:_________________________
非負有理數:________________ 有理數: __________________________
三、 填空題
1、一個數的絕對值是 6 ,這個數是 。 2、絕對值小于3的整數有 個。
3、 的相反數的倒數是 。 4、計算: 。
5、如果 ,那么 a= 。 6、如果規定上升8米記作8米,那么-7米表示 ______________。
7、最小的正整數是____,的負整數是_____,絕對值最小的有理數是_______
8、 河道中的水位比正常水位低0.2m記作-0.2m,那么比正常水位高0.1m記作________。
9、一潛艇所在深度是-80米,一條鯊魚在艇上30m處,鯊魚所在的深度是________。
【鞏固練習2】一.填空題
1. 數軸上與表示﹣2點相距3個單位的點所表示的數是________。
2. 數軸表示+3和﹣3的點離開原點的距離是______個單位,這兩個點的位置分別在_______點右邊和左邊。
3. 在有理數中的負整數是________, 最小的正整數是________, 的非正數是________, 最小的非負數是________.
4. 用“>”或“<”號填空:
1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;
5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;
8) ﹣π ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .
【鞏固練習3】一.填空題
1. 如果一個數的相反數是它本身, 則這個數是________.
2. 如果一個數的相反數是最小的正整數, 則這個數是________.
3. 若 , 則a與b________; 若 , 則a與b________; 若a+b=0, 則a與b________.
4. 在數軸上與-3距離4個單位的點表示的數是
5.寫出大于-4且小于3的所有整數為______________;
二、 求下列各數的相反數
0.26 ; ;π-3 ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b 。
三、 在數軸上表示出下列各數的相反數的點,并比較大小。
,4,﹣1.5, ,0,1,8,﹣2,﹣(﹣4.5),∣ ∣
【鞏固練習4】一.選擇題
1. ﹣∣﹣3∣是 ( ) A. 正數 B. 負數 C. 正數或0 D. 負數或0
2. 絕對值最小的整數是 ( ) A. 0 B. 1 C. –1 D. 1和-1
二、填空題 1.若a= , 則∣a∣=________; 若∣a∣=3, 則a=________.
2.﹣∣﹣ ∣=______; ∣﹣ ∣-∣﹣ ∣=______; ∣﹣0.77∣÷∣+ ∣=_______;
3.絕對值小于4的負整數有 個,正整數有 個,整數有 個
三、解答題
1. 已知∣x+y+3∣=0,求∣x+y∣的值。
2. 已知 A,B是數軸上兩點,A點表示﹣1,B點表示3.5,求A,B兩點間的距離。
3. 已知:∣a+2∣+∣b-3∣=0,求2a2-b+1的值。
【鞏固練習5】計算:1) ﹣ - + -( ); 2) 1-2+3-4+5-6+…+99-100;
3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4) 。
【鞏固練習6】計算:1)( )× ; 2) × ÷( ); 3) ×(-5);
4)( )÷ ; 5) ÷( ) ; 6) ÷(-5);
【鞏固練習7】1.計算:(-5)3; -53; ; ;(-1)2001; 3。
2. 若∣x+1∣+(2x-y+4)2= 0 ,求代數式x5y+xy5的值。
【鞏固練習8】計算:(1)3 ; (2) (3) (4)
(5) (6) (7) (8)
(9) (10)–32-∣(-5)3∣× -18÷∣-(-3)2∣;
(11) -3- × -6÷∣ ∣3; (12)(-1)5×[ ÷(-4)+ ×(-0.4)]÷ ;
(13)如果 ,求 的值.
一、 選擇題(10小題,每小題3分,共30分,答案填入表格中)
1. 在下列各數中,-3.8,+5,0,- 1 2 , 3 5 ,-4,中,屬于負數的個數為( )
A.2個 B.3個 C.4個 D.5個
2. 計算:-6+4的結果是( )
A.2 B.10 C.-2 D.-10
3. 一個數的倒數等于它本身的數是( )
A.1 B. C.±1 D.0
4. 下列判斷錯誤的是( )
A.任何數的絕對值一定是非負數; B.一個負數的絕對值一定是正數;
C.一個正數的絕對值一定是正數; D.一個數不是正數就是負數;
5. 有理數a、b、c在數軸上的位置如圖所示則下列結論正確的是( )
A.a>b>0>c B.b>0>a>c
C.b
6.兩個有理數的和是正數,積是負數,則這兩個有理數( )
A.都是正數; B.都是負數;
C.一正一負,且正數的絕對值較大; D.一正一負,且負數的絕對值較大。
7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )
A.3或13 B.13或-13 C.3或-3 D.-3或-13
8. 大于-1999而小于2000的所有整數的和是( )
A.-1999 B.-1998 C.1999 D.2000
9. 當n為正整數時, 的值是( )
A.0 B.2 C. D.2或
10. 補充下列表格:
31 32 33 34 35 36 37
3 9 27 81 243 … …
根據表格中個位數的規律可知,325的個位數是( )
A.1 B.3 C.7 D.9
二、填空題(8小題,每小題2分,共16分)
11. 的相反數是 .
12.若水位上升20cm記作+20cm,則-15cm表示__________________.
13.4個-3相乘寫成乘方的形式是__________________.
14.比較大小: .
15. 在數軸上距2.5有3.5個單位長度的點所表示的數是 .
16. 用“偶數”或“奇數”填:當 為_________時,
17. 一根2米長的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,
第五次后剩下的長度為______米.
18. 觀察下列圖形:
它們是按一定規律排列的,依照此規律,第10個圖形共有 個★.
三、解答題(6小題,每小題5分,共30分)
19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)
21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)2
23. (用簡便方法) 24. - -[-5 + (0.2× -1)÷(-1 )]
25. 若│a│=2,b=-3,c是的負整數,求a + b-c的值.(6分)
26.某牛奶廠在一條南北走向的大街上設有O,A,B,C四家特約經銷店. A店位于O店的南面3千米
處;B店位于O店的北面1千米處,C店在O店的北面2千米處.
(1)請以O為原點,向北的方向為正方向,1個單位長度表示1千米,畫一條數軸.
在數軸上分別表示出O,A,B,C的位置嗎?(4分)
(2)牛奶廠的送貨車從O店出發,要把一車牛奶分別送到A,B,C三家經銷店,最后回到O店,
那么走的最短路程是多少千米?(4分)
27.股民小楊上星期五買進某公司股票1000股,每股27元,下表為本周內每日該股票的漲跌情況:
星期 一 二 三 四 五
每股漲跌 +2.20 +1.42 -0.80 -2.52 +1.30
(1)星期三收盤時,該股票漲或跌了多少元?(4分)
(2)本周內該股票的價是每股多少元?最底價是每股多少元?(2分)
(3)已知小楊買進股票時付了1.5‰的手續費,賣出時還需要付成交額的1.5‰的手續費和1‰的交易稅,
如果小楊在星期五收盤前將全部股票賣出,則他的收益情況如何? (4分)
七年級數學教案電子版篇11
一、加強教育教學理論學習,提高個人的理論素養
1、認真學習教學大綱和有關數學課程等材料。
2、加大對自己和學生的自我分析和解剖。
二、按數學課程標準,進行教學研究,提高課堂教學效益
1、在備課中,積極開展共同研究,全面合作的活動,努力促進教學的進度與學生的接受力相掛鉤。
2、加強對自己和上課的標準,探討課堂教學結構、模式和方法,多向其他有經驗的老師虛心學習和請教,使自己盡快成為熟悉教學業務,具有一定教學業務水平合格教師。
3、加強對自己知識水平的提高,俗話說,要想給別人一杯水,自己首先有一桶水的容量。只有自己有了充足的知識,才能在教學上能夠左右逢圓,得心應手,使學生能夠對知識更加理解得透徹。
4、加大對學生的管束力度,并讓學生從心理上認識到自己的學習的.重要性,使他們養成良好的學習和生活習慣。
5、“初中新教材”的數學教學要充分體現以人為本的教學目標。切實重視學生思維能力培養,切實提高學生的解決問題的技能和創新能力。力爭讓學生全面發展。
6、加強教學常規調研,做好備課筆記、聽課筆記、作業批改等的檢查或抽查工作。認真學習其他老師經驗,切實提高備課和上課的質量,嚴格控制學生作業量,規范作業批改。
7、針對不同學習基礎的學生的不同情況,進行不同的教育方式,既讓后進的學生認識到自己仍然是老師的好學生,又使學習較好學生意識到自己還有不足之處,始終保持奮斗和旺盛的精力和樂趣,并注意做好學生的思想教育工作,寓思想教育于教學工作中。
8、總之,我會在教學工作中會努力努力再努力,日常管理上勤奮勤奮再勤奮,不斷得使自己有所進步,使自己走得更遠,更遠,更遠。
七年級數學教案電子版篇12
一、知識導航
1、主要概念:變量是 ;自變量是 ;因變量是 。
2、變量之間關系的三種表示方法: 。
其特點是:列表:對于表中自變量的每一個值,可以不通過計算,直接把 的值找到,查詢方便;但是欠 ,不能反映變化的全貌,不易看出變量間的對應規律。
關系式:簡明扼要、規范準確;但有些變量之間的關系很難或不能用關系式表示。圖像:形象直觀。可以形象地反映出事物變化的過程、變化的趨勢和某些特征;但圖像是近似的、局部的,由圖像確定因變量的值欠準確。
3、主要數學思想方法:類比和比較的方法(舉例說明);數形結合和數學建模思想(舉例說明)。
二、學習導航
1、有關概念應用
例1下列各題中,那些量在發生變化?其中自變量和因變量各是什么?
① 用總長為60的籬笆圍成一邊長為L(m),面積為S(m2)的矩形場地;
②正方形邊長是3,若邊長增加x,則面積增加為y.
2、利用表格尋找變化規律
例2 研究表明,固定鉀肥和磷肥的施用量,土豆的產量與氮肥的施用量有如下關系:
施肥量
(千克/公頃) 0 34 67 101 135 202 259 336 404 471
土豆產量
(噸/公頃) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75
上表中反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?根據表格中的數據,你認為氮肥的使用量是多少時比較適宜?
變式(湖南)一輛小汽車在高速公路上從靜止到起動10秒后的速度經測量如下表:
時間/秒 0 1 2 3 4 5 6 7 8 9 10
速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9
①上表反映了哪兩個變量之間的關系?哪個是因變量?
②如果用t表示時間,v表示速度,那么隨著t的變化,v的變化趨勢是什么?
③當t每增加1秒時,v的變化情況相同嗎?在哪1秒中,v的增加?
④若高速公路上小汽車行駛的速度的上限為120千米/時,試估計大約還需要幾秒小汽車速度就將達到這個上限?
3、用關系式表示兩變量的關系
例3.、①設一長方體盒子高為10,底面積為正方形,求這個長方形的體積v與底面邊長a的關系。②設地面氣溫是20℃,如果每升高1km,氣溫下降6℃,求氣溫與t高度h的關系。
變式(江西)如圖,一個矩形推拉窗,窗高1.5米,則活動窗扇的通風面積A(平方米)與拉開長度b(米)的關系式是: .
4、用圖像表示兩變量的關系
例4、(桂林)今年,在我國內地發生了“非典型肺炎”疫情,在黨和政府的正確領導下,目前疫情已得到有效控制.下圖是今年5月1日至5月14日的內地新增確診病例數據走勢圖(數據來源:衛生部每日疫情通報).從圖中,可知道:
(1)5月6日新增確診病例人數為 人;
(2)在5月9日至5月11日三天中,共新增確診病例人數為 人;
(3)從圖上可看出,5月上半月新增確診病例總體呈 趨勢.
例5、(陜西) 星期天晚飯后,小紅從家里出去散步,下圖描述了她散步過程中離家的距離s(米)與散步所用時間t(分)之間的函數關系.依據圖象,下面描述符合小紅散步情景的是( ).
A.從家出發,到了一個公共閱報欄,看了一會兒報,就回家了
B.從家出發,到了一個公共閱報欄,看了一會兒報后,
繼續向前走了一段,然后回家了
C.從家出發,一直散步(沒有停留),然后回家了
D.從家出發,散了一會兒步,就找同學去了,18分鐘后才開始返
變式 (成都)右圖表示甲騎電動自行車和乙駕駛汽車沿相同路線行駛45千米,由A地到B地時,行駛的路程y(千米)與經過的時間x(小時)之間的關系.請根據這個行駛過程中的圖象填空:汽車出發 小時與電動自行車相遇;電動自行車的速度為 千米/時;汽車的速度為 千米/時;汽車比電動自行車早 小時到達B地.
三、一試身手
1、(貴陽)小明根據鄰居家的故事寫了一首小詩:“兒子學成今日返,老父早早到車站,兒子到后細端詳,父子高興把家還.”如果用縱軸y表示父親與兒子行進中離家的距離,用橫軸 表示父親離家的時間,那么下面的圖象與上述詩的含義大致吻合的是( )
2、在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余
部分的高度y(厘米)與燃燒時間x(小時)
之間的關系如圖所示.
請根據圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是 ,
從點燃到燃盡所用的時間分別是 ;
(2)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內,甲蠟燭比乙蠟燭高?在什么時間段內,甲蠟燭比乙蠟燭低?
3、(2006宿遷課改)小明從家騎車上學,先上坡到達A地后再下坡到達學校,所用的時間與路程如圖所示.如果返回時,上、下坡速度仍然保持不變,那么他從學校回到家需要的時間是( )
A.8.6分鐘 B.9分鐘
C.12分鐘 D.16分鐘
4、某機動車出發前油箱內有油42l,行駛若干小時后,途中在加油站加油若干升.油箱中余油量Q(L)與行駛時間t(L)之間的關系如圖8 所示.
回答問題:(1)機動車行駛幾小時后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地還有 ,車速為 ,
若要達到目的地,油箱中的油是否夠用?并說明原因.
5、在一次實驗中,小明把一根彈簧的上端固定.在其下端懸掛物體,下面是測得的彈簧的長度y與所掛物體質量x的一組對應值.
所掛質量
0 1 2 3 4 5
彈簧長度
18 20 22 24 26 28
(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)當所掛物體重量為 時,彈簧多長?不掛重物時呢?
(3)若所掛重物為 時(在允許范圍內),你能說出此時的彈簧長度嗎?
6、小明在暑期社會實距活動中,以每千克0.8元的價格從批發市場購進若干千克瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數之間的關系如圖9所示.請你根據圖象提供的信息完成以下問題:
(1)求降價前銷售金額y(元)與售出西瓜 (千克)之間的關系式;
(2)小明從批發市場共購進多少千克西瓜?
(3)小明這次賣瓜賺子多少錢?
7、如圖中的折線ABC是甲地向乙地打長途電話所需要付的電話費y(元)與通話時間t(分鐘)之間的關系的圖象.
(1)通話1分鐘,要付電話費多少元?通話5分鐘要付多少電話費?
(2)通話多少分鐘內,所支付的電話費不變?
(3)如果通話3分鐘以上,電話費y(元)與時間t(分鐘)的關系式是 ,那么通話4分鐘的電話費是多少元?
8、如圖是某水庫的蓄水量v(萬米3)與干旱持續時間t(天)之間的關系圖,回答下列問題:
(1)該水庫原蓄水量為多少萬米3?持干旱持續時間10天后,水庫蓄水量為多少萬米3?
(2)若水庫的蓄水量小于400萬米3時,將發生嚴重干旱警報,請問:持續干旱多少天后,將發生嚴重干旱警報?
(3)按此規律,持續干旱多少天時,水庫將干涸?
9、(成都市)某移動通信公司開設了兩種通信業務,“全球通”:使用時首先繳50元月租費,然后每通話1分鐘,自付話費0.4元;“動感地帶”:不繳月租費,每通話1分鐘,付話費0.6元(本題的通話均指市內通話),若一個月通話x分鐘,兩種方式的費用分別為 元和 元.
(1)寫出 、 與x之間的關系式;
(2)一個月內通話多少分鐘,兩種移動通訊費用相同?
(3)某人估計一個月內通話300分鐘,應選擇哪種移動通信合算些?
七年級數學教案電子版篇13
教學目標
1, 掌握相反數的概念,進一步理解數軸上的點與數的對應關系;
2, 通過歸納相反數在數軸上所表示的點的特征,培養歸納能力;
3, 體驗數形結合的思想。
教學難點 歸納相反數在數軸上表示的點的特征
知識重點 相反數的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 問題1:請將下列4個數分成兩類,并說出為什么要這樣分類
4, -2,-5,+2
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)
思考結論:教科書第13頁的思考
再換2個類似的數試一試。
歸納結論:教科書第13頁的歸納。 以開放的形式創設情境,以學生進行討論,并培養分類的能力
培養學生的觀察與歸納能力,滲透數形思想
深化主題提煉定義 給出相反數的定義
問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的相反數是什么?為什么?
學生思考討論交流,教師歸納總結。
規律:一般地,數a的相反數可以表示為-a
思考:數軸上表示相反數的兩個點和原點有什么關系?
練一練:教科書第14頁第一個練習 體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。
深化相反數的概念;“零的相反數是零”是相反數定義的一部分。
強化互為相反數的數在數軸上表示的點的幾何意義
給出規律
解決問題 問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數是-5和+5
練一練:教科書第14頁第二個練習 利用相反數的概念得出求一個數的相反數的方法
小結與作業
課堂小結 1, 相反數的定義
2, 互為相反數的數在數軸上表示的點的特征
3, 怎樣求一個數的相反數?怎樣表示一個數的相反數?
本課作業 1, 必做題 教科書第18頁習題1.2第3題
2, 選做題 教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征.這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想.
2,教學引人以開放式的問題人手,培養學生的分類和發散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法.
3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發揮的余地.
七年級數學教案電子版篇14
一、學習與導學目標:
知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;
過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;
情感態度:通過師生、生生合作學習,促進交流,激發興趣。
二、學程與導程活動:
A、準備活動:
1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數。現在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。
2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。
提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?
歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。
B、學習概念:
1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3。可見:相反數是成對出現的,不能單獨存在。
一般地,a和-a互為相反數。“-a”可讀成“a的相反數”。
2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)
3、從上述意義上看,你看如何規定0的相反數更為合理?
商討得:0的相反數仍是0,即0的相反數等于它本身。
C、應用舉例:
1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。
2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。
3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。
結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?
4、化簡下列各數P124練習,你愿意繼續嘗試化簡下列各式嗎?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能試著總結規律嗎?(括號內外同號結果為正,括號內外異號結果為負)。
5、若a=-5,則-a=;若-x=7,則x=。
三、筆記與板書提綱:
課題應用舉例中的2
活動引例應用舉例中的4(學生練習),5
概念
四、練習與拓展選題:
1、教科書P18/3;
2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。
七年級數學教案電子版篇15
教學目標:1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質
過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,
增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。
教學重點:同底數冪乘法的運算性質,并能解決一些實際問題。
教學過程:
一、復習回顧
活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:
二、情境引入
活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數,則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?
(3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么
(5)當三個以上同底數冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.
三、應用提高
活動內容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區分“同底數冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
四、拓展延伸
活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、課堂小結
活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。
六、布置作業
1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
