七年級數學教案設計
教案是指教學活動的計劃和組織安排,包括教學目標、教學內容、教學方法、教學資源、評價方式等方面的設計。這里給大家分享七年級數學教案設計,方便大家寫七年級數學教案設計時參考。
七年級數學教案設計篇1
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數學方法和思想的重要性及其應用的廣泛性。體會數學的價值,培養對數學學習的熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數學思想方法,建構知識網絡。
四、教學準備
多媒體課件,多邊形紙模
五、教學步驟與過程
(一)導入復習
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節課我們就來重點整理和復習有關這些多邊形的面積的知識。
板書課題:多邊形面積計算復習課
(二)回顧整理,建構網絡
1.復習了平行四邊形、三角形、梯形面積公式的推導過程。
⑴請大家回憶一下:平行四邊形、三角形、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
⑵根據學生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七、作業布置
練習十九
七年級數學教案設計篇2
本學期是初中學習的關鍵時期,進入初三,學生成績差距較大。教學任務非常艱巨。因此,要完成教學任務,必須緊扣教學大綱,結合教學內容和學生實際,把握好重點、難點。努力把今學期的任務圓滿完成。本著為了學生的一切為宗旨,把培養高素質人才作為目標,特制定本計劃。
一.完成九年級下冊的內容
1.掌握二次函數的概念,五種基本函數關系式,會建立數學模型來解決實際問題。
2.學會用邏輯推理的思想來證明等腰三角形,平行四邊形,矩形,菱形,正方形等幾何圖形的性質定理。
3.加強學生對數學知識的認識方法,培養他們正確的學習方法。
4.通過關於圖形和證明的教學,進一步培學生的邏輯思維能力.與空間觀念。
二.本學期在提高教學質量上采取的措施。
1.改進教學方法,采用啟發式教學。
2.注意教科書的系統性,使學生牢固掌握舊知識的基礎上,學習新知識,明確新舊知識的聯系。
3.注意發展學生探索知識的能力,提高學生分析問題的能力。
4.開放性問題、探究性問題教學,培養學生創新意識、探究能力。
5.鼓勵合作學習,加強個別輔導,提高差生成績。
七年級數學教案設計篇3
教學目標:
1、知識與技能:
(1)借助數軸理解相反數的概念,會求一個數的相反數。
(2)培養學生觀察、猜想、驗證等能力,初步形成數形結合的思想。
2、過程與方法:
在教師的指導下,讓學生通過觀察、比較,歸納出相反數的概念和性質。
重點、難點
1、重點:理解相反數的意義,會求一個數的相反數。
2、難點:對相反數意義的理解。
教學過程:
一、創設情景,導入新課
1、請兩位同學背靠背,一個向左走5步,另一個向右走5步,如果向右走為正,向左、向右分別記作什么?(生答:+5、-5),+5與-5這樣成對出現的數就是為們今天要學習的相反數。
二、合作交流,解讀探究
1、(出示小黑板)
教師提出問題:上圖中數軸上的點B和點D表示的數各是什么?有什么關系?
學生活動:分小組討論,與同伴交流。
教師活動:請幾位同學說出他們討論的結果,指出點B表示+2.6,點D表示-2.6,它們只有符號不同,到原點的距離都是2.6。
2、(板書):如果兩個數只有符號不同,那么我們將其中一個數叫做另一個數的相反數,也稱這兩個數互為相反數。
0的相反數是0。
3、學生活動:
在數軸上,表示互為相反數的兩個點有什么關系?
學生代表回答后,小結:在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點的距離相等。
4、練習填空:
3的相反數是;-6的相反數是;-(-3)=;-(-0.8)=;
學生活動:在練習本上解答,并與同伴交流,師生共同訂正。
歸納:化簡多重符號時,一個正數前不管有多少個“+”號,都可全部省去不寫;一個數前有偶數個“-”號,也可以把“-”號一起去掉;一個正數前面有奇數個“-”號,則化簡后只保留一個“-”號。
三、應用遷移,鞏固提高
1、課本P10第1題。
2、填空:
(1)__的相反數是;(2)__的相反數是;(3)__的相反數是2/3。
3、如果一個數的相反數是它本身,則這個數是。
4、若α、β互為相反數,則α+β=。
5、-(-4)是的相反數,-(-2)的相反數是。
6、化簡下列各數的符號
-(-9)=;+(-3.5)=;
-=;-{-[+(-7)]}=。
7、若-x=10,則x的相反數在原點的側。
8、若x的&39;相反數是-3,則;若x的相反數是-5.7,則。
四、總結反思
本節課學習了相反數的意義,并認識了相反數在數軸上的特征,數a的相反數是-a,0的相反數是0,在數軸上,表示互為相反數(零除外)的兩個點,位于原點的兩側,并且到原點的距離相等。
五、課后作業
課本P13習題1.2A組第3、4題。
七年級數學教案設計篇4
一、有理數的意義
1.有理數的分類
知識點:大于零的數叫正數,在正數前面加上“﹣”(讀作負)號的數叫負數;如果一個正數表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3, ,5.2也可寫作+3,+ ,+5.2;零既不是正數,也不是負數。
2.數軸
知識點:數軸是數與圖形結合的工具;數軸:規定了原點、正方向和單位長度的直線;數軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數軸的根本依據;數軸的作用:1)形象地表示數(因為所有的有理數都可以用數軸上的點表示,以后會知道數軸上的每一個點并不都表示有理數),2)通過數軸從圖形上可直觀地解釋相反數,幫助理解絕對值的意義,3)比較有理數的大小:a)右邊的數總比左邊的數大,b)正數都大于零,c)負數都小于零,d)正數大于一切負數
3. 相反數
知識點: 只有符號不同的兩個數互為相反數;在數軸上表示互為相反數的兩個點到原點的距離相等且分別在原點的兩邊;規定:0的相反數是0。
4. 絕對值
知識點: 一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作∣a∣;絕對值的意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,即若a>0,則∣a∣=a. 若a=0,則∣a∣=0. 若a<0,則∣a∣=﹣a ;絕對值越大的負數反而小;兩個點a與b之間的距離為:∣a-b∣。
二、有理數的運算
1. 有理數的加法
知識點:有理數的加法法則:1)同號兩數相加,取相同的符號,并把絕對值相加;2)異號兩數相加,①絕對值相等時,和為零(即互為相反數的兩個數相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3)一個數和0相加仍得這個數。
加法交換律:a+b=b+a; 加法結合律:a+b+c=a+(b+c)
多個有理數相加時,把符號相同的數結合在一起計算比較簡便,若有互為相反的數,可利用它們的和為0的特點。
2. 有理數的減法
知識點:有理數的減法法則:減去一個數等于加上這個數的相反數,即 a-b=a+(-b)。
注意:運算符號“+”加號、“-”減號與性質符號“+”正號、“-”負號統一與轉化,如a-b中的減號也可看成負號,看作a與b的相反數的和:a+(-b);一個數減去0,仍得這個數;0減去一個數,應得這個數的相反數。
3. 有理數的加減混合運算
知識點:有理數的加減法混合運算可以運用減法法則統一成加法運算;加減法混合運算統一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。
4. 有理數的乘法
知識點:乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數和0相乘都得0。
幾個不等于0的數相乘,積的符號由負因數的個數決定;當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。幾個數相乘,有一個因數為0,積就為0。
乘法交換律:ab=ba 乘法結合律:abc=a(bc) 乘法分配律:a(b+c)=ab+bc
5. 有理數的除法
知識點:除法法則1:除以一個數等于乘上這數的倒數,即a÷b= =a? (b≠0即0不能做除數)。
除法法則2:兩數相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數都得0。
倒數:乘積是1的兩數互為倒數,即a? =1(a≠0),0沒有倒數。
注意:倒數與相反數的區別
6. 有理數的乘方
知識點:乘方:求n個相同因數的積的運算。乘方的結果叫冪,an中,a叫做底數,n叫做指數。
乘方的符號法則:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;0的任何次冪都為0。
7. 有理數的混合運算
知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。
技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。
【鞏固練習1】一.選擇題
1. 關于數“0”,以下各種說法中,錯誤的是 ( )
A. 0是整數 B. 0是偶數 C. 0是自然數 D. 0既不是正數也不是負數
2. –3.782: ( )
A. 是負數,不是分數 B. 不是分數,是有理數 C. 是分數,不是有理數 D. 是分數,也是負數
二、將下列各數填入相應的集合中。 ,-1,12,0,-3.01,0.62,-15,- ,180,-42,-45%,π,1。
整數:______________________ 自然數:___________________________
正數:______________________ 負數: ___________________________
偶數:______________________ 奇數: ___________________________
分數:______________________ 非負數:___________________________
非負整數: _________________ 非正分數:_________________________
非負有理數:________________ 有理數: __________________________
三、 填空題
1、一個數的絕對值是 6 ,這個數是 。 2、絕對值小于3的整數有 個。
3、 的相反數的倒數是 。 4、計算: 。
5、如果 ,那么 a= 。 6、如果規定上升8米記作8米,那么-7米表示 ______________。
7、最小的正整數是____,的負整數是_____,絕對值最小的有理數是_______
8、 河道中的水位比正常水位低0.2m記作-0.2m,那么比正常水位高0.1m記作________。
9、一潛艇所在深度是-80米,一條鯊魚在艇上30m處,鯊魚所在的深度是________。
【鞏固練習2】一.填空題
1. 數軸上與表示﹣2點相距3個單位的點所表示的數是________。
2. 數軸表示+3和﹣3的點離開原點的距離是______個單位,這兩個點的位置分別在_______點右邊和左邊。
3. 在有理數中的負整數是________, 最小的正整數是________, 的非正數是________, 最小的非負數是________.
4. 用“>”或“<”號填空:
1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;
5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;
8) ﹣π ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .
【鞏固練習3】一.填空題
1. 如果一個數的相反數是它本身, 則這個數是________.
2. 如果一個數的相反數是最小的正整數, 則這個數是________.
3. 若 , 則a與b________; 若 , 則a與b________; 若a+b=0, 則a與b________.
4. 在數軸上與-3距離4個單位的點表示的數是
5.寫出大于-4且小于3的所有整數為______________;
二、 求下列各數的相反數
0.26 ; ;π-3 ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b 。
三、 在數軸上表示出下列各數的相反數的點,并比較大小。
,4,﹣1.5, ,0,1,8,﹣2,﹣(﹣4.5),∣ ∣
【鞏固練習4】一.選擇題
1. ﹣∣﹣3∣是 ( ) A. 正數 B. 負數 C. 正數或0 D. 負數或0
2. 絕對值最小的整數是 ( ) A. 0 B. 1 C. –1 D. 1和-1
二、填空題 1.若a= , 則∣a∣=________; 若∣a∣=3, 則a=________.
2.﹣∣﹣ ∣=______; ∣﹣ ∣-∣﹣ ∣=______; ∣﹣0.77∣÷∣+ ∣=_______;
3.絕對值小于4的負整數有 個,正整數有 個,整數有 個
三、解答題
1. 已知∣x+y+3∣=0,求∣x+y∣的值。
2. 已知 A,B是數軸上兩點,A點表示﹣1,B點表示3.5,求A,B兩點間的距離。
3. 已知:∣a+2∣+∣b-3∣=0,求2a2-b+1的值。
【鞏固練習5】計算:1) ﹣ - + -( ); 2) 1-2+3-4+5-6+…+99-100;
3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4) 。
【鞏固練習6】計算:1)( )× ; 2) × ÷( ); 3) ×(-5);
4)( )÷ ; 5) ÷( ) ; 6) ÷(-5);
【鞏固練習7】1.計算:(-5)3; -53; ; ;(-1)2001; 3。
2. 若∣x+1∣+(2x-y+4)2= 0 ,求代數式x5y+xy5的值。
【鞏固練習8】計算:(1)3 ; (2) (3) (4)
(5) (6) (7) (8)
(9) (10)–32-∣(-5)3∣× -18÷∣-(-3)2∣;
(11) -3- × -6÷∣ ∣3; (12)(-1)5×[ ÷(-4)+ ×(-0.4)]÷ ;
(13)如果 ,求 的值.
一、 選擇題(10小題,每小題3分,共30分,答案填入表格中)
1. 在下列各數中,-3.8,+5,0,- 1 2 , 3 5 ,-4,中,屬于負數的個數為( )
A.2個 B.3個 C.4個 D.5個
2. 計算:-6+4的結果是( )
A.2 B.10 C.-2 D.-10
3. 一個數的倒數等于它本身的數是( )
A.1 B. C.±1 D.0
4. 下列判斷錯誤的是( )
A.任何數的絕對值一定是非負數; B.一個負數的絕對值一定是正數;
C.一個正數的絕對值一定是正數; D.一個數不是正數就是負數;
5. 有理數a、b、c在數軸上的位置如圖所示則下列結論正確的是( )
A.a>b>0>c B.b>0>a>c
C.b
6.兩個有理數的和是正數,積是負數,則這兩個有理數( )
A.都是正數; B.都是負數;
C.一正一負,且正數的絕對值較大; D.一正一負,且負數的絕對值較大。
7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )
A.3或13 B.13或-13 C.3或-3 D.-3或-13
8. 大于-1999而小于2000的所有整數的和是( )
A.-1999 B.-1998 C.1999 D.2000
9. 當n為正整數時, 的值是( )
A.0 B.2 C. D.2或
10. 補充下列表格:
31 32 33 34 35 36 37
3 9 27 81 243 … …
根據表格中個位數的規律可知,325的個位數是( )
A.1 B.3 C.7 D.9
二、填空題(8小題,每小題2分,共16分)
11. 的相反數是 .
12.若水位上升20cm記作+20cm,則-15cm表示__________________.
13.4個-3相乘寫成乘方的形式是__________________.
14.比較大小: .
15. 在數軸上距2.5有3.5個單位長度的點所表示的數是 .
16. 用“偶數”或“奇數”填:當 為_________時,
17. 一根2米長的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,
第五次后剩下的長度為______米.
18. 觀察下列圖形:
它們是按一定規律排列的,依照此規律,第10個圖形共有 個★.
三、解答題(6小題,每小題5分,共30分)
19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)
21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)2
23. (用簡便方法) 24. - -[-5 + (0.2× -1)÷(-1 )]
25. 若│a│=2,b=-3,c是的負整數,求a + b-c的值.(6分)
26.某牛奶廠在一條南北走向的大街上設有O,A,B,C四家特約經銷店. A店位于O店的南面3千米
處;B店位于O店的北面1千米處,C店在O店的北面2千米處.
(1)請以O為原點,向北的方向為正方向,1個單位長度表示1千米,畫一條數軸.
在數軸上分別表示出O,A,B,C的位置嗎?(4分)
(2)牛奶廠的送貨車從O店出發,要把一車牛奶分別送到A,B,C三家經銷店,最后回到O店,
那么走的最短路程是多少千米?(4分)
27.股民小楊上星期五買進某公司股票1000股,每股27元,下表為本周內每日該股票的漲跌情況:
星期 一 二 三 四 五
每股漲跌 +2.20 +1.42 -0.80 -2.52 +1.30
(1)星期三收盤時,該股票漲或跌了多少元?(4分)
(2)本周內該股票的價是每股多少元?最底價是每股多少元?(2分)
(3)已知小楊買進股票時付了1.5‰的手續費,賣出時還需要付成交額的1.5‰的手續費和1‰的交易稅,
如果小楊在星期五收盤前將全部股票賣出,則他的收益情況如何? (4分)
七年級數學教案設計篇5
教學目標
1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。
2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。
教學重點與難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。
教學準備
多媒體課件
教學過程
一、創設問題情境
1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作__________,B處記作__________。
以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方在數軸上的A、B兩點又有什么特征(從形和數兩個角度去感受絕對值)。
3、在數軸上找到-5和5的點,它們到原點的距離分別是多少表示和的點呢
小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念———絕對值。
二、建立數學模型
1、絕對值的概念
(借助于數軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記-5=5;5的絕對值是5,記做5=5。
注意:①與原點的關系②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用+5表示的話,那么下降了5度,就用-5表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數的絕對值
-1.6,0,-10,+10
2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)
特點:
1、一個正數的絕對值是它本身
2、一個負數的絕對值是它的相反數
3、零的絕對值是零
4、互為相反數的兩個數的絕對值相等
3.出示題目
(1)-3的符號是______X,絕對值是______;
(2)+3的符號是______X,絕對值是______;
(3)-6.5的符號是______X,絕對值是______;
(4)+6.5的符號是______X,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成。現在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎
5、練習3:回答下列問題
①一個數的絕對值是它本身,這個數是什么數
②一個數的絕對值是它的相反數,這個數是什么數
③一個數的絕對值一定是正數嗎
④一個數的絕對值不可能是負數,對嗎
⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數
(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)
分析:
①從數字上分析
∵+4=4,-4=4∴絕對值等于4的數是+4和-4畫一個數軸
②從幾何意義上分析,畫一個數軸
因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數是+4和-4.
6、練習:做書上12頁課內練習1、2兩題。
四、歸納小結
1、本節課我們學習了什么知識
2、你覺得本節課有什么收獲
3、由學生自行總結在自主探究,合作學習中的體會。
五、課后作業
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業題。
七年級數學教案設計篇6
一:教材分析:
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節的重點和難點,同時也是本章節的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養他們對數學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續教學內容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(A)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
(B)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關系;
(2)找出相等關系后不會列方程;
(3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發式教學的原則
教學的理論依據是:
1:必須先明確根據應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有_千克面粉”寫成“設原來有_”。另外,在列方程中,各代數式的單位應該是相同的,如例1中,代數式“_字串7”“—15%_”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。
4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。
5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區別或最佳列法,以開闊學生的思路。
四:教學程序:
(一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業五個部分。
(二):教學簡要過程:
1:復習提問:
(1):什么叫做等式?
(2):等式與方程之間有哪些關系?
(3):求_的15%的代數式。
(4):敘述代數式與方程的區別。
(理由是:通過復習加深學生對等式,方程,代數式之間關系的理解,有利于學生熟練正確根據題意列出一元一次方程,從而有利降低本節的難度。)
2:導入講授新課:
(1):教具:
一塊小黑板,抄212例1題目及相對應的空表格。
左邊右邊
(2):新課引述:
(3):講述課文212例1:
(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據題目關系,切勿盲目性)通過理解啟發學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養學生這種發散思維能力。)
指導學生設原來重量為_千克。這里分析等式左邊:原來重量為_千克,運出重量為15%_千克,把以上填入表格左邊。字串7分析等式右邊:剩余重量為42500千克,填入表格右邊。
(目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數和列代數式,有利于降低列方程解應用題的難度)
把以上左邊和右邊的代數式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。
同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。
結合解題過程向學生介紹一元一次應用題解法的一般步驟:
課本215黑體字
3:課堂練習:
課文216練習1,2題
(目的是:讓學生通過適當的模仿例題的解題思想方法從而加深對本課的內容的理解掌握。)
4:新課鞏固:
學生對本節內容進行要小結:
列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。
(目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)
5:作業布置:
課文221習題4-4(1)A組1,2,3題
(目的:在于檢驗學生對本節內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)
五:板書設計:
4_4一元一次方程的應用:
例題:小黑板出示例1題目解:設原來有_千克面粉,那么運
相等關系:原來重量—運出重量=剩余重量出了15%_千克,依題意,得
等式左邊:等式右邊:_—15%_=42500
原來重量為_千克,剩余重量為42500千克。解這個方程:
運出重量為15%_千克。85/100__=42500
解一元一次方程的一般步驟:_=50000(千克)
小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。
七年級數學教案設計篇7
教材簡析:
本節內容是在學生掌握了分數乘法和分數除以整數的計算方法基礎上繼續探索一個數除以分數的計算方法。例2結合整數除法的問題,“每人吃2個,可以分給幾人?”激活學生對除法數量關系的回憶,并用這個數量系列出求吃1/2個、1/3個、1/4個,可以分給幾人的算式,然后通過觀察、操作探索出一個數的幾分之一就等于這個數乘以幾分之一的倒數。例3是對一個數除以幾分之一方法的拓展。通過在條形圖上分一分,讓學生直接得到4÷2/3的結果,再利用例2得到的方法算一算,發現結果是相同的。最后,通過對兩個例題的比較,歸納出整數除以分數的方法。練一練和練習十一的.5——8主要是讓學生鞏固新學的計算方法,并與分數乘法和前一節課分數除以整數的方法作對比,溝通新舊知識的聯系,形成較完整的知識體系。
教學目標:
1、使學生經歷探索整數除以分數計算方法的過程,理解并掌握整數除以分數的計算方法,能正確計算整數除以分數的式題。
2、使學生在探索整數除以分數計算方法的過程中,進一步體會猜想——驗證的數學思想方法。
3、使學生在學習活動中,進一步感受數學學習的挑戰性,體驗成功的樂趣,增強學好數學的自信心。
教具準備:
課件
教學過程:
一、談話導入
同學們,吃是為了汲取生理上的營養,學是為了汲取精神上的養份。今天,我們采用“邊品邊學”的方式,學習“整數除以分數”。
揭題:整數除以分數
二、提出猜想
1、談話:老師帶來了同樣大小的4個橙子(媒體呈現)
如果每人吃2個,可以分給幾人怎么列式?
學生口頭列式。
提問:為什么用4÷2計算呢?
學生回答后,師小結:也就是說把4個橙子,按2個一份平均分,可以用除法計算。
問:如果每人吃一個呢?
學生口頭列式。
2、出示:如果“每人吃1/2個,可以分給幾人”又怎么列式?
學生口頭列式,教師板書:4÷1/2
追問:為什么用除法計算?
學生回答后,師小結:就是把4個橙子,按個一份平均分,因此也是用除法計算(課件出示)
3、談話:請看屏幕,從圖中你數出4÷1/2得多少?(教師隨學生回答板書4÷1/2=8)
提問:從這幅圖中,你還能想到什么?
(一個橙子分給2個人,4個橙子就能分給8個人。)
學生回答,教師恰當評價。
教師針對學生的回答,繼續提問:如果這樣想又怎樣列式?(教師板書4×2=8)
4、思考:仔細對比這兩個式子,你有什么發現?
學生先獨立思考,再在小組里交流自己的想法。
反饋時恰當評價。(教師板書4÷1/2=4×2)
三、進行驗證
(一)驗證一
過渡:是不是所有的整數除以分數都能用以上幾個同學說的方法做呢?這只是我們的猜想,還需進一步驗證。(板書猜想、驗證)
1、出示:如果每人吃1/41/4個,可以分給幾人?
學生口頭列式
提問:按剛才的方法,可以怎么計算?結果是多少?
(學生回答,教師板書4÷1/4=4×4=16)
談話:結果是否正確,我們來驗證一下
請每個同學拿出4個同樣大小的圓片代表橙子,用筆分一分。
學生操作,教師巡視指導。
反饋:你是怎么分的,分得結果是多少?(隨學生利用實物投影儀演示)
小結:操作的結果和剛才計算的結果是一樣的。
2、出示:如果每人吃1/31/3個呢?
請學生先列式計算,用圓紙片分一分的方法求證結果是否正確。
反饋交流(輔以電腦演示)
小結:通過驗證,再次證明了剛才的猜想是正確的。
(二)驗證二
過渡:剛才研究的都是整數除以幾分之一的題目,整數除以幾分之幾的題目,有沒有類似的規律,我們繼續探索。
1、出示例3(電腦出現圖示)
提問:怎么理解2/3米?
2、讓學生獨立列式算一算。
3、學生做好后追問:這個結果是否正確,請同學們打開書57也在例3的圖中動筆分一分進行驗證。
4、學生獨立思考后在小組里交流,全班反饋時指名學生在投影儀下演示。
四、獲得結論
1、觀察比較
學生觀察黑板上的一些算式:
4÷1/2=4×2=8
4÷1/3=4×3=12
4÷1/4=4×4=16
4÷2/3=4×3/2=6
說說這些乘式中的第二個因數與除式中的除數有什么關系?
3、思考概括
通過以上操作活動你認為整數除以分數可以怎樣計算?小組里交流回報。
五、鞏固練習
過渡:今天的知識大餐你品出了哪些滋味,不妨來回味一番。
1、填一填12÷2/3=12×(3/2)=189÷6/7=9×(7/6)=21/2
2、找朋友
3、練習十一第5題
先出示前一部分要求,學生想一想后再讓學生算一算,體會計算方法的正確性。
4、算一算10÷2/58÷2/33÷6/712÷8/7
說明:轉化成乘法后,能約分的要先約分。
5、算一算、比一比
(1)逐一出示第一組題,師:老師這兒有一組題,比一比誰算得又快又對。準備筆和草稿紙,算出答案馬上舉手。
提問:做這組題要注意什么?
6、實際問題
談話:現在,人們出行都有便利的交通工具,下面是自行車、小轎車、摩托車行使30千米所用時間表,你能求出它們各自的速度嗎?
提示:單位用千米/時
六、課堂小結
今天學習了整數除以分數的內容,你有什么收獲?
明天將要學習分數除以分數,你有什么想法呢?
七、布置作業
書60頁第6題。
七年級數學教案設計篇8
一、教學目的
1.使學生進一步理解自變量的取值范圍和函數值的意義.
2.使學生會用描點法畫出簡單函數的圖象.
二、教學重點、難點
重點:1.理解與認識函數圖象的意義.
2.培養學生的看圖、識圖能力.
難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的對應值問題.
三、教學過程
復習提問
1.函數有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結合函數y=x的圖象,說明什么是函數的圖象?
3.說出下列各點所在象限或坐標軸:
新課
1.畫函數圖象的方法是描點法.其步驟:
(1)列表.要注意適當選取自變量與函數的對應值.什么叫“適當”?——這就要求能選取表現函數圖象特征的幾個關鍵點.比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來.
(2)描點.我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點.
(3)用光滑曲線連線.根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.
一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線).
2.講解畫函數圖象的三個步驟和例.畫出函數y=x+0.5的圖象.
小結
本節課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖.
練習
①選用課本練習(前一節已作:列表、描點,本節要求連線)
②補充題:畫出函數y=5x-2的圖象.
作業
選用課本習題.
四、教學注意問題
1.注意滲透數形結合思想.通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征.
2.注意充分調動學生自己動手畫圖的積極性.
3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養學生看圖、識圖的能力。
七年級數學教案設計篇9
教學目標 1,掌握絕對值的概念,有理數大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數的大小.
3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.
教學難點 兩個負數大小的比較
知識重點 絕對值的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;
觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體驗數學知識與生活實際的聯系.
因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.
合作交流
探究規律 例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規律?
-3,5,0,+58,0.6
要求小組討論,合作學習.
教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁).
鞏固練習:教科書第15頁練習.
其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區別. 求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例.
學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.
結合實際發現新知 引導學生看教科書第16頁的圖,并回答相關問題:
把14個氣溫從低到高排列;
把這14個數用數軸上的點表示出來;
觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?
應怎樣比較兩個數的大小呢?
學生交流后,教師總結:
14個數從左到右的順序就是溫度從低到高的順序:
在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數.
在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則。
想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系.
要求學生在頭腦中有清晰的圖形. 讓學生體會到數學的規定都來源于生活,每一種規定都有它的合理性。
數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的數左小右大這方面結合起來來了解,所以配置想象練習 ,加強數與形的想象。
課堂練習 例2,比較下列各數的大小(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式
練習:第18頁練習
小結與作業
課堂小結 怎樣求一個數的絕對值,怎樣比較有理數的大小?
本課作業 1, 必做題:教產書第19頁習題1,2,第4,5,6,10
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,情景的創設出于如下考慮:①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發學習的興趣.②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受.
2, 一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發展和學生的能力培養角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3, 有理數大小的比較法則是大小規定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規定:“在數軸上表示有理數,它們從左到右的順序就是從小到大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型.為此設置了想象練習.
4,本節課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節課教學。 一、知識與能力 理解有理數的概念,懂得有理數的兩種分類方法:會判別一個有理數是整數還是分數,是正數、負數還是零。 二、過程與方法 經歷對有理數進行分類的探索過程,初步感受分類討論的思想。 三、情感態度與價值觀 通過對有理數的學習,體會到數學與現實世界的緊密聯系。 教學重難點及突破 在引入了負數后,本課對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節課的.學習,使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。 教學準備 用電腦制作動畫體現有理數的分類過程。 教學過程 四、課堂引入 1、我們把小學里學過的數歸納為整數與分數,引進了負數以后,我們學過的數有哪些?將如何歸類? 2.舉例說明現實中具有相反意義的量。 3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意義? 4.舉兩個例子說明+5與-5的區別。 【知識與技能】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示,能用科學計算器求平方根及其近似值。 【過程與方法】通過練習,進一步熟悉開平方的運算過程,能熟練的進行開平方的運算過程。 【情感、態度與價值觀】體會平方與開平方這一對互逆運算的辯證關系,感受平方根在現實世界中的客觀存在,增強數學知識的應用意識。 【教學重點】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示。 【教學難點】能熟練的進行開平方運算,并熟悉各種不同形式的開平方運算,為后續學習打下基礎。 【教具準備】小黑板科學計算器 【教學過程】 一、復習導入 1、小剛家廚房的面積為10平方米的正方形,它的邊長是多少米?邊長的近似值是多少?(用四舍五入的方法取到小數點后面第二位)(,) 2、用計算器分別求,得近似值。(用四舍五入的方法取到小數點后面第三位) 3、0.36的平方根是() 4、(-5)2的算術平方根是() 二、練習內容 (一)填空 1、若=1.732,那么=()2、(-)2=() 3、=()4、若_=6,則=() 5、若=0,則_=()6、當_()時,有意義。 (二)選擇 1、下列各數中沒有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是() A.B.C.D.;2、4_2-49=0;3、(25/81)_2=1; 4、求8+(-1/6)2的算術平方根; 5、求b2-2b+1的算術平方根;(b<1) 6、 7、;(用四舍五入方法取到小數點后面第三位) 8、肖明家裝修用了大小相同的正方形瓷磚共66塊,鋪成了10.56平方米的房間,肖明想知道每塊瓷磚的規格,請你幫助算一算。 三、小結與鞏固 教學目標: 1、使學生在現實情境中初步認識負數,了解負數的作用,感受運用負數的需要和方便。 2、使學生知道正數和負數的讀法和寫法,知道0既不是正數,又不是負數。正數都大于0,負數都小于0。 3、使學生體驗數學和生活的密切聯系,激發學生學習數學的興趣,培養學生應用數學的能力。 教學重點: 初步認識正數和負數以及讀法和寫法。 教學難點: 理解0既不是正數,也不是負數。 教學具準備: 多媒體課件、溫度計、練習紙、卡片等。 教學過程: 一、游戲導入(感受生活中的相反現象) 1、游戲:我們來玩個游戲輕松一下,游戲叫做《我反我反我反反反》。游戲規則:老師說一句話,請你說出與它相反意思的話。 ①向上看(向下看) ②向前走200米(向后走200米) ③電梯上升15層(下降15層)。 2、下面我們來難度大些的,看誰反應最快。 ①我在銀行存入了500元(取出了500元)。 ②知識競賽中,五(1)班得了20分(扣了20分)。 ③10月份,學校小賣部賺了500元。(虧了500元)。 ④零上10攝氏度(零下10攝氏度)。 說明什么是相反意義的量(意義正好相反) 3、談話:周老師的一位朋友喜歡旅游,11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預報。(天氣預報片頭) 二、教學例1 1、認識溫度計,理解用正負數來表示零上和零下的溫度。 課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。 這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢? B、現在你能看出南京是多少攝氏度嗎?(是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。 (2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格) 指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結合課件,突出上海的氣溫在零刻度線以上)。 (3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎? (4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。 ①上海的氣溫比0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的4℃也就是+4℃。(板書) 負號能不能省略不寫?為什么? ②北京的氣溫比0℃低,是零下4攝氏度。我們可以用—4℃來表示零下4攝氏度(板書—4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。 (5)小結:通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數可以來表示零上溫度,用—4這樣的數可以表示零下溫度。 2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上) 3、聽一段中央臺的天氣預報,將你聽到城市的最低和溫度記錄下來。 4、小結:通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。 三、學習珠峰、吐魯番盆地的海拔表達方法(P4第2題) 1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關的。最近經國家測繪局公布了珠峰的最新海拔高度。老師把有關網頁帶來了。(課件出現網頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。 2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么? 3、我們再來看新疆的吐魯番盆地的海拔圖。(動態演示吐魯番盆地的海拔情況)。 你又能從圖上看懂些什么呢?(引導學生交流,回答珠穆朗瑪峰比海平面高8844。43米;吐魯番盆地比海平面低155米)。 4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎? (1)交流:珠穆朗瑪峰的海拔可以記作:+8844。43米或8844。43米。 吐魯番盆地的海拔可以記作:—155米。(板書) (2)小結:以海平面為界線,+8844。43米或8844。43米這樣的數可以表示海平面以上的高度,—155米這樣的數可以表示海平面以下的高度。 四、小組討論,歸納正數和負數。 1、通過剛才的學習,我們收集到了一些數據(課件顯示)我們可以用這些數來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數,它們一樣嗎?你們想幫它們分分類嗎? 2、學生交流、討論。 3、指出:因為+8844。43也可以寫成8844。43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導學生爭論,各自發表意見) ①如果都同意分三類的,老師可以出難題:我覺得0可以分在4它們一類啊,你們怎么來說服我? ②如果有學生發表分三類的,有的分兩類的,可以引導他們互相爭論。 4、小結:什么是正數、負數? 師:(結合圖)我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負幾表示。0是正負數的分界點,把正數和負數分開了,它誰都不屬于。但對于正數和負數來說,它卻必不可少。我們把以前學過的,象+4、16、3/8、0。5、+8844。43等這樣的數叫做正數;象—4、—155等這樣的數我們叫做負數;而0既不是正數,也不是負數。(板書)這節課我們就和大家一起來認識正數和負數。(板書:認識正數和負數) 五、聯系生活,鞏固練習 1、練習一第2、3題 2、你知道嗎:水沸騰時的溫度是__。水結冰時的溫度是__。地球表面的最低溫度是。 3、討論生活中的正數和負數 (1)存折:這里的—800表示什么意思?(以原來的錢為標準,取出了800元記作—800;存入了1200元記作1200元,還可以記作+1200元) (2)電梯:這里的1和—1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,—1就表示地下一層)。老師現在要到33層應該按幾啊?要到地下3層呢? 六、課堂小結 這節課我們一起認識了正數和負數。在我們的生活中,零攝氏度以上和零攝氏度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數和負數來表示。 教學目的 借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。 重點、難點 1.重點:列一元一次方程解決有關行程問題。 2.難點:間接設未知數。 教學過程 一、復習 1.列一元一次方程解應用題的一般步驟和方法是什么? 2.行程問題中的基本數量關系是什么? 路程=速度×時間 速度=路程 / 時間 二、新授 例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠? 畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。 1.坐公共汽車行了多少路程?乘的士行了多少路程? 2.乘公共汽車用了多少時間,乘出租車用了多少時間? 3.如果都乘公共汽車到火車站要多少時間? 4,等量關系是什么? 如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。 可設公共汽車從小張家到火車站要x小時。 設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。 三、鞏固練習 教科書第17頁練習1、2。 四、小結 有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。 四、作業 教科書習題6.3.2,第1至5題。 教學目標 知識與能力:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。 過程與方法:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。 情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。 教學重點與難點 教學重點:絕對值的概念和求一個數的絕對值 教學難點:絕對值的幾何意義及求絕對值等于某一個正數的有理數。 教學準備 多媒體課件 教學過程 一、創設問題情境 用多媒體動畫顯示:兩只小狗從同一點O出發,在一條筆直的街上跑, 一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記做__________,B處記做__________。 以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。 (用生動有趣的圖畫吸引學生,即復習了數軸和相反數,又為下文作準備)。 2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩 又有什么特征?(從形和數兩個角度去感受絕對值)。 3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢? 小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念———絕對值。 二、建立數學模型 絕對值的概念 (借助于數軸這一工具,師生共同討論,引出絕對值的概念) 絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的&39;絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記-5=5;5的絕對值是5,記做5=5。 注意:①與原點的關系②是個距離的概念 練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。 (通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。) 三、應用深化知識 1、例題求解 例1、求下列各數的絕對值 -1.6,,0,-10,+10 解:-1.6=1.6=0=0 -10=10+10=10 2、練習2:略 3、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結) 特點:1、一個正數的絕對值是它本身 2、一個負數的絕對值是它的相反數 3、零的絕對值是零 4、互為相反數的兩個數的絕對值相等 4、練習3:回答下列問題 ①一個數的絕對值是它本身,這個數是什么數? ②一個數的絕對值是它的相反數,這個數是什么數? ③一個數的絕對值一定是正數嗎? ④一個數的絕對值不可能是負數,對嗎? ⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎? (由學生口答完成,進一步鞏固絕對值的概念) 5、例2、求絕對值等于4的數。 (讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。) 分析: ①從數字上分析 ∵+4=4,-4=4∴絕對值等于4的數是+4和-4畫一個數軸(如下圖) ②從幾何意義上分析,畫一個數軸(如下圖) ∵數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M ∴絕對值等于4的數是+4和-4 注意:說明符號“∵”讀作“因為”,“∴”讀作“所以” 6、練習本:做書上16頁課內練習3、4兩題。 四、歸納小結 本節課我們學習了什么知識? 你覺得本節課有什么收獲? 由學生自行總結在自主探究,合作學習中的體會。 五、課后作業 讓學生去尋找一些生活中只考慮絕對值的實際例子。 一、學習與導學目標: 知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數; 過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法; 情感態度:通過師生、生生合作學習,促進交流,激發興趣。 二、學程與導程活動: A、準備活動: 1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數。現在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。 2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。 提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少? 歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。 B、學習概念: 1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3。可見:相反數是成對出現的,不能單獨存在。 一般地,a和-a互為相反數。“-a”可讀成“a的相反數”。 2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱) 3、從上述意義上看,你看如何規定0的相反數更為合理? 商討得:0的相反數仍是0,即0的相反數等于它本身。 C、應用舉例: 1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。 2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。 3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。 結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎? 4、化簡下列各數P124練習,你愿意繼續嘗試化簡下列各式嗎? +(-2/3),-(-2/3),-(+2/3),+(+2/3) 你能試著總結規律嗎?(括號內外同號結果為正,括號內外異號結果為負)。 5、若a=-5,則-a=;若-x=7,則x=。 三、筆記與板書提綱: 課題應用舉例中的2 活動引例應用舉例中的4(學生練習),5 概念 四、練習與拓展選題: 1、教科書P18/3; 2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。七年級數學教案設計篇10
七年級數學教案設計篇11
七年級數學教案設計篇12
七年級數學教案設計篇13
七年級數學教案設計篇14
七年級數學教案設計篇15
