七年級教案數學
教案的編寫應注重簡潔明了、重點突出、條理清晰、可操作性強等特點,以便更好地指導教學工作。怎樣寫七年級教案數學?這里提供七年級教案數學分享,供大家參考。
七年級教案數學篇1
一、知識導航
1、主要概念:變量是 ;自變量是 ;因變量是 。
2、變量之間關系的三種表示方法: 。
其特點是:列表:對于表中自變量的每一個值,可以不通過計算,直接把 的值找到,查詢方便;但是欠 ,不能反映變化的全貌,不易看出變量間的對應規律。
關系式:簡明扼要、規范準確;但有些變量之間的關系很難或不能用關系式表示。圖像:形象直觀。可以形象地反映出事物變化的過程、變化的趨勢和某些特征;但圖像是近似的、局部的,由圖像確定因變量的值欠準確。
3、主要數學思想方法:類比和比較的方法(舉例說明);數形結合和數學建模思想(舉例說明)。
二、學習導航
1、有關概念應用
例1下列各題中,那些量在發生變化?其中自變量和因變量各是什么?
① 用總長為60的籬笆圍成一邊長為L(m),面積為S(m2)的矩形場地;
②正方形邊長是3,若邊長增加x,則面積增加為y.
2、利用表格尋找變化規律
例2 研究表明,固定鉀肥和磷肥的施用量,土豆的產量與氮肥的施用量有如下關系:
施肥量
(千克/公頃) 0 34 67 101 135 202 259 336 404 471
土豆產量
(噸/公頃) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75
上表中反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?根據表格中的數據,你認為氮肥的使用量是多少時比較適宜?
變式(湖南)一輛小汽車在高速公路上從靜止到起動10秒后的速度經測量如下表:
時間/秒 0 1 2 3 4 5 6 7 8 9 10
速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9
①上表反映了哪兩個變量之間的關系?哪個是因變量?
②如果用t表示時間,v表示速度,那么隨著t的變化,v的變化趨勢是什么?
③當t每增加1秒時,v的變化情況相同嗎?在哪1秒中,v的增加?
④若高速公路上小汽車行駛的速度的上限為120千米/時,試估計大約還需要幾秒小汽車速度就將達到這個上限?
3、用關系式表示兩變量的關系
例3.、①設一長方體盒子高為10,底面積為正方形,求這個長方形的體積v與底面邊長a的關系。②設地面氣溫是20℃,如果每升高1km,氣溫下降6℃,求氣溫與t高度h的關系。
變式(江西)如圖,一個矩形推拉窗,窗高1.5米,則活動窗扇的通風面積A(平方米)與拉開長度b(米)的關系式是: .
4、用圖像表示兩變量的關系
例4、(桂林)今年,在我國內地發生了“非典型肺炎”疫情,在黨和政府的正確領導下,目前疫情已得到有效控制.下圖是今年5月1日至5月14日的內地新增確診病例數據走勢圖(數據來源:衛生部每日疫情通報).從圖中,可知道:
(1)5月6日新增確診病例人數為 人;
(2)在5月9日至5月11日三天中,共新增確診病例人數為 人;
(3)從圖上可看出,5月上半月新增確診病例總體呈 趨勢.
例5、(陜西) 星期天晚飯后,小紅從家里出去散步,下圖描述了她散步過程中離家的距離s(米)與散步所用時間t(分)之間的函數關系.依據圖象,下面描述符合小紅散步情景的是( ).
A.從家出發,到了一個公共閱報欄,看了一會兒報,就回家了
B.從家出發,到了一個公共閱報欄,看了一會兒報后,
繼續向前走了一段,然后回家了
C.從家出發,一直散步(沒有停留),然后回家了
D.從家出發,散了一會兒步,就找同學去了,18分鐘后才開始返
變式 (成都)右圖表示甲騎電動自行車和乙駕駛汽車沿相同路線行駛45千米,由A地到B地時,行駛的路程y(千米)與經過的時間x(小時)之間的關系.請根據這個行駛過程中的圖象填空:汽車出發 小時與電動自行車相遇;電動自行車的速度為 千米/時;汽車的速度為 千米/時;汽車比電動自行車早 小時到達B地.
三、一試身手
1、(貴陽)小明根據鄰居家的故事寫了一首小詩:“兒子學成今日返,老父早早到車站,兒子到后細端詳,父子高興把家還.”如果用縱軸y表示父親與兒子行進中離家的距離,用橫軸 表示父親離家的時間,那么下面的圖象與上述詩的含義大致吻合的是( )
2、在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余
部分的高度y(厘米)與燃燒時間x(小時)
之間的關系如圖所示.
請根據圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是 ,
從點燃到燃盡所用的時間分別是 ;
(2)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內,甲蠟燭比乙蠟燭高?在什么時間段內,甲蠟燭比乙蠟燭低?
3、(2006宿遷課改)小明從家騎車上學,先上坡到達A地后再下坡到達學校,所用的時間與路程如圖所示.如果返回時,上、下坡速度仍然保持不變,那么他從學?;氐郊倚枰臅r間是( )
A.8.6分鐘 B.9分鐘
C.12分鐘 D.16分鐘
4、某機動車出發前油箱內有油42l,行駛若干小時后,途中在加油站加油若干升.油箱中余油量Q(L)與行駛時間t(L)之間的關系如圖8 所示.
回答問題:(1)機動車行駛幾小時后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地還有 ,車速為 ,
若要達到目的地,油箱中的油是否夠用?并說明原因.
5、在一次實驗中,小明把一根彈簧的上端固定.在其下端懸掛物體,下面是測得的彈簧的長度y與所掛物體質量x的一組對應值.
所掛質量
0 1 2 3 4 5
彈簧長度
18 20 22 24 26 28
(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)當所掛物體重量為 時,彈簧多長?不掛重物時呢?
(3)若所掛重物為 時(在允許范圍內),你能說出此時的彈簧長度嗎?
6、小明在暑期社會實距活動中,以每千克0.8元的價格從批發市場購進若干千克瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數之間的關系如圖9所示.請你根據圖象提供的信息完成以下問題:
(1)求降價前銷售金額y(元)與售出西瓜 (千克)之間的關系式;
(2)小明從批發市場共購進多少千克西瓜?
(3)小明這次賣瓜賺子多少錢?
7、如圖中的折線ABC是甲地向乙地打長途電話所需要付的電話費y(元)與通話時間t(分鐘)之間的關系的圖象.
(1)通話1分鐘,要付電話費多少元?通話5分鐘要付多少電話費?
(2)通話多少分鐘內,所支付的電話費不變?
(3)如果通話3分鐘以上,電話費y(元)與時間t(分鐘)的關系式是 ,那么通話4分鐘的電話費是多少元?
8、如圖是某水庫的蓄水量v(萬米3)與干旱持續時間t(天)之間的關系圖,回答下列問題:
(1)該水庫原蓄水量為多少萬米3?持干旱持續時間10天后,水庫蓄水量為多少萬米3?
(2)若水庫的蓄水量小于400萬米3時,將發生嚴重干旱警報,請問:持續干旱多少天后,將發生嚴重干旱警報?
(3)按此規律,持續干旱多少天時,水庫將干涸?
9、(成都市)某移動通信公司開設了兩種通信業務,“全球通”:使用時首先繳50元月租費,然后每通話1分鐘,自付話費0.4元;“動感地帶”:不繳月租費,每通話1分鐘,付話費0.6元(本題的通話均指市內通話),若一個月通話x分鐘,兩種方式的費用分別為 元和 元.
(1)寫出 、 與x之間的關系式;
(2)一個月內通話多少分鐘,兩種移動通訊費用相同?
(3)某人估計一個月內通話300分鐘,應選擇哪種移動通信合算些?
七年級教案數學篇2
教學目標:
1.知識與技能:通過摸球游戲,了解并掌握計算一類事件發生可能性的方法,體會概率的意義。
2.過程與方法:通過本節課的學習,幫助學生更容易地感受到數學與現實生活的聯系,體驗到數學在解決實際問題中的作用,培養學生實事求是的態度及合作交流的能力。
3.情感與態度:通過環環相扣的、層層深入的問題設置,鼓勵學生積極參與,培養學生自主、合作、探究的能力,培養學生學習數學的興趣。
教學重點:
1.概率的定義及簡單的列舉法計算。
2.應用概率知識解決問題。
教學難點:靈活應用概率的計算方法解決各種類型的實際問題。
教學過程:
一、復習舊知
1、下面事件:①在標準大氣壓下,水加熱到100℃時會沸騰。②擲一枚硬幣,出現反面。③三角形內角和是360°;④螞蟻搬家,天會下雨,
不可能事件的有,必然事件有,不確定事件有。
2、任何兩個偶數之和是偶數是事件;任何兩個奇數之和是奇數是事件;
3、歡歡和瑩瑩進行“剪刀、石頭、布”游戲,約定“三局兩勝”決定誰最終獲勝,那么歡歡獲勝的可能性。
4、足球比賽前裁判通過拋硬幣讓雙方的隊長猜正反來選場地,只拋了一次,而雙方的隊長卻都沒有異議,為什么?
5、一個均勻的骰子,拋擲一次,它落地時向上的數可能有幾種不同的結果?每一種結果的概率分別為多少?
求一個隨機事件概率的基本方法是通過大量的重復試驗,那么能不能不進行大量的重復試驗,只通過一次試驗中可能出現的結果求出隨機事件的概率,這就是我們今天要探究學習的“等可能事件的概率”。
二、情境導入
1、任意擲一枚均勻的硬幣,可能出現哪些結果?每種結果出現的可能性相同嗎?正面朝上的概率是多少?
2、這個袋子中有5個乒乓球,分別標有1,2,3,4,5這5個號碼,這些球除號碼外都相同,攪勻后任意摸出一個球,拿出來后再將球放回袋子中。
(1)會出現哪些可能的結果?
(2)每種結果出現的可能性相同嗎?它們的概率分別是多少?你是怎么得到概率的值?
學生分組討論,教師引導
三、探究新知
1、請大家觀察前面的拋硬幣、擲骰子和摸球游戲,它們有什么共同的特點?
學生分組討論,教師引導:
(1)一次試驗可能出現的結果是有限的;
(2)每種結果出現的可能性相同。
設一個實驗的所有可能結果有n種,每次試驗有且只有其中的一種結果出現。如果每種結果出現的可能性相同,那么我們就稱這個試驗的結果是等可能的。
2、探究等可能性事件的概率
(1)拋擲一個均勻的骰子一次,它落地時向上的數是偶數的概率是多少呢?
(2)不透明的一個袋子中裝有大小相同的三個球,一個黃色和已編有1.2.3號碼的3個白球,從中摸出2個球,一共有多少種不同的結果?摸出2個白球有多少種不同結果?摸出2個白球的概率是多少?
學生先獨立思考,然后同桌間討論,教師巡視指導
一般地,如果一個試驗有n種等可能的結果,事件A包含其中的種結果,那么事件A發生的概率為:
P(A)=/n
必然事件發生的概率為1,記做P(必然事件)=1;不可能事件的發生的概率為0,記做P(不可能事件)=0;如果A為不確定事件,那么0<p(a)<1<p="">
3、應用新知
例:任意擲一枚均勻骰子。
1.擲出的點數大于4的概率是多少?
2.擲出的點數是偶數的概率是多少?
解:任意擲一枚均勻骰子,所有可能的結果有6種:擲出的點數分別是1,2,3,4,5,6,因為骰子是均勻的,所以每種結果出現的可能性相等。
1.擲出的點數大于4的結果只有2兩種:擲出的點數分別是5,6.
所以P(擲出的點數大于4)=2/6=1/3
2.擲出的點數是偶數的結果有3種:擲出的點數分別是2,4,6.
所以P(擲出的點數是偶數)=3/6=1/2
四、實踐練習
1、袋子里裝有三個紅球和一個白球,它們除顏色外完全相同。小麗從盒中任意摸出一球。請問摸出紅球的概率是多少?
2、先后拋擲2枚均勻的硬幣
(1)一共可能出現多少種不同的結果?
(2)出現“1枚正面、1面反面”的結果有多少種?
(3)出現“1枚正面、1面反面”的概率有多少種?
(4)出現“1枚正面、1面反面”的概率是1/3,對嗎?
3、將一個均勻的骰子先后拋擲2次,計算:
(1)一共有多少種不同的結果?
(2)其中向上的數之和分別是5的結果有多少種?
(3)向上的數之和分別是5的概率是多少?
(4)向上的數之和為6和7的概率是多少?
五、課堂檢測
1、甲、乙、丙三個人隨意的站一排拍照,乙恰好站中間的概率是()
A2/9B1/3C4/9D以上都不對
2、在一次抽獎中,若抽中的概率是0.34,則抽不中的概率是()
A0.34B0.17C0.66D0.76
3、把標有1、2、3、4…10的10個乒乓球放在一個箱中,搖勻后,從中任取一個,號碼小于7的奇數概率是()
A3/10B7/10C2/5D3/5
4、某商場舉辦有獎銷售活動辦法如下:凡購滿100元得獎券一張,多購多得,現有10000張獎券,設特等獎1個,一等獎10個,二等獎100個,則一張獎券中一等獎的概率是
5、一個袋中裝有3個紅球,2個白球和4個黃球,每個球除顏色外都相同。從中任意摸出一球,則:P(摸到紅球)=
P(摸到白球)=
P(摸到黃球)=
6、一個袋中有3個紅球和5個白球,每個球除顏色外都相同。從中任意摸出一球,摸到紅球和摸到白球的概率相等嗎?分別是多少?如果不相等,能否通過改變袋中紅球或白球的數量,使摸到的紅球和白球的概率相等?
六、課堂小結
回想一下這節課的學習內容,同學們自己的收獲是什么?
1、等可能性事件的特征:
(1)一次試驗中有可能出現的結果是有限的。(有限性)
(2)每種結果出現的可能性相等。(等可能性)
2、求等可能性事件概率的步驟:
(1)審清題意,判斷本試驗是否為等可能性事件。
(2)計算所有基本事件的總結果數n。
(3)計算事件A所包含的結果數。
(4)計算P(A)=/n。
布置作業:
1、P148習題6.4知識技能1.2.3
2、問題解決:請大家為“翠苑小區”親子活動設計一個有獎競猜活動方案。
板書設計
等可能事件的概率(1)
等可能事件的特征:
1、一次試驗可能出現的結果是有限的;
2、每一結果出現的可能性相等。
七年級教案數學篇3
一學期的工作結束了,可以說緊張忙碌卻收獲多多?;仡欉@學期的工作,我教九(4)班的數學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經驗,吸取教訓,使以后的工作能夠有效、有序地進行,現將教學所得總結如下:
一、在備課方面
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數。
二、在教學過程方面
在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發現知識。波利亞說:“學習任何知識的途徑都是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律、性質和聯系?!敝挥谐浞职l揮學生的主體作用,讓學生人人參與,才能限度地促進學生的發展。但還是難免受傳統教學觀念的影響,加之經驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學?!啊钡慕虒W模式下,才開始進一步嘗試,并在不斷的嘗試中總結經驗。
三、工作中存在的問題
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。
3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導
4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。
四、今后努力的方向
1)、加強學習,學習新教學模式下新的教學思想。
2)、熟讀初一到初三的數學教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發事件方法。
4)、加強轉差培優力度。
5)、加強教學反思,加大教學投入。
一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業務水平。
七年級教案數學篇4
教學目標
讓學生熟練地進行有理數加減混合運算,并利用運算律簡化運算。
教學重點和難點
重點:加減運算法則和加法運算律。
難點:省略加號與括號的代數和的計算。
課堂教學過程
一、從學生原有認知結構提出問題
什么叫代數和?說出-6+9-8-7+3兩種讀法。
二、講授新課
1.計算下列各題:
2.計算:
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.當a=13,b=-12.1,c=-10.6,d=25.1時,求下列代數式的值:
(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;
(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;
(9)(a-c)-(b-d);(10)a-c-b+d.
請同學們觀察一下計算結果,可以發現什么規律?
a-(b+c)=a-b-c;
a-(b+c+d)=a-b-c-d;
a-(b-d)=a-b+d;
(a+b)-(c+d)=a+b-c-d;
(a-c)-(b-d)=a-c-b+d.
括號前是“-”號,去括號后括號里各項都改變了符號;括號前是“+”號(沒標符號當然也是省略了“+”號)去括號后各項都不變。
4.用較簡便方法計算:
(4)-16+25+16-15+4-10.
三、課堂練習
1.判斷題:在下列各題中,正確的在括號中打“√”號,不正確的在括號中打“×”號:
(1)兩個數相加,和一定大于任一個加數.()
(2)兩個數相加,和小于任一個加數,那么這兩個數一定都是負數.()
(3)兩數和大于一個加數而小于另一個加數,那么這兩數一定是異號.()
(4)當兩個數的符號相反時,它們差的絕對值等于這兩個數絕對值的和.()
(5)兩數差一定小于被減數.()
(6)零減去一個數,仍得這個數.()
(7)兩個相反數相減得0.()
(8)兩個數和是正數,那么這兩個數一定是正數.()
2.填空題:
(1)一個數的絕對值等于它本身,這個數一定是______;一個數的倒數等于它本身,這個數一定是______;一個數的相反數等于它本身,這個數是______。
(2)若a<0,那么a和它的相反數的差的絕對值是______.
(3)若a+b=a+b,那么a,b的關系是______.
(4)若a+b=a-b,那么a,b的關系是______.
(5)-[-(-3)]=______,-[-(+3)]=______.
這兩組題要求學生自己分析,判斷題中錯的&39;應舉出反例,同時要求符號語言與文字敘述語言能夠互化。
四、作業
1.當a=2.7,b=-3.2,c=-1.8時,求下列代數式的值:
(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.
2.分別根據下列條件求代數式x-y-z+w的值:
(1)x=-3,y=-2,z=0,w=5;
(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分別根據下列條件求代數式3a的值:
(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)當b>0時,a,a-b,a+b,哪個最大?哪個最???
(2)當b<0時,a,a-b,a+b,哪個最大?哪個最???
5.判斷題:對的在括號里打“√”,錯的在括號里打“×”,并舉出反例。
(1)若a,b同號,則a+b=a+b.()
(2)若a,b異號,則a+b=a-b.()
(3)若a<0、b<0,則a+b=-(a+b).()
(4)若a,b異號,則a-b=a+b.()
(5)若a+b=0,則a=b.()
6.計算:(能簡便的應當盡量簡便運算)
課堂教學設計說明
1.本課時是習題課.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能。講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正。
2.關于“去括號法則”,只要求學生了解,并不要求追究所以然。
七年級教案數學篇5
一、課題
2.1數怎么不夠用了(2)
二、教學目標
1.使學生理解有理數的意義,并能將給出的有理數進行分類;
2.培養學生樹立分類討論的思想。
三、教學重點和難點
重點
難點
有理數包括哪些數.
有理數的分類及其分類的標準.
四、教學手段
現代課堂教學手段
五、教學方法
啟發式教學
六、教學過程
(一)、從學生原有的認知結構提出問題
1.什么是正、負數?
2.如何用正、負數表示具有相反意義的量?數0表示量的意義是什么?舉例說明.
3.任何一個正數都比0大嗎?任何一個負數都比0小嗎?
4.什么是整數?什么是分數?
根據學生的回答引出新課.
(二)、講授新課
1.給出新的整數、分數概念
引進負數后,數的范圍擴大了.過去我們說整數只包括自然數和零,引進負數后,我們把自然數叫做正整數,自然數前加上負號的數叫做負整數,因而整數包括正整數(自然數)、負整數和零,同樣分數包括正分數、負分數,即
2.給出有理數概念
整數和分數統稱為有理數,即
有理數是英語“Rationalnumber”的譯名,更確切的譯名應譯作“比
3.有理數的分類
為了便于研究某些問題,常常需要將有理數進行分類,需要不同,分類的方法也常常不同根據有理數的定義可將有理數分成兩類:整數和分數.有理數還有沒有其他的分類方法?
待學生思考后,請學生回答、評議、補充.
教師小結:按有理數的符號分為三類:正有理數、負有理數和零,簡稱正數、負數和零,即
并指出,在有理數范圍內,正數和零統稱為非負數.并向學生強調:分類可以根據不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類.
(三)、運用舉例變式練習
例1
將下列數按上述兩種標準分類:
例2
下列各數是正數還是負數,是整數還是分數:
課堂練習
25、-100按兩種標準分類.
2、下列各數是正數還是負數,是整數還是分數?
(四)、小結
教師引導學生回答如下問題:本節課學習了哪些基本內容?學習了什么數學思想方法?應注意什么問題?
七、練習設計
1.把下列各數填在相應的.括號里(將各數用逗號分開):
正整數集合:{…};
負整數集合:{…};
正分數集合:{…};
負分數集合:{…}.
2.填空題:
的數是______,在分數集合里的數是______;
(2)整數和分數合起來叫做______,正分數和負分數合起來叫做______.
3.選擇題
(1)-100不是
A.有理數B.自然數C.整數D.負有理數
(2)在以下說法中,正確的是[]
A.非負有理數就是正有理數
B.零表示沒有,不是有理數
C.正整數和負整數統稱為整數
D.整數和分數統稱為有理數
八、板書設計
2.1數怎么不夠用了(2)
(一)知識回顧(三)例題解析(五)課堂小結
(二)觀察發現例1、例2
(四)課堂練習練習設計
九、教學后記
在傳授知識的同時,一定要重視數學基本思想方法的教學.關于這一點,布魯納有過精彩的論述.他指出,掌握數學思想和方法可以使數學更容易理解和更容易記憶,更重要的是領會數學思想和方法是通向遷移大道的“光明之路”,如果把數學思想和方法學好了,在數學思想和方法的指導下運用數學方法駕馭數學知識,就能培養學生的數學能力.不但使數學學習變得容易,而且會使得別的學科容易學習.顯然,按照布魯納的觀點,數學教學就不能就知識論知識,而是要使學生掌握數學最根本的東西,用數學思想和方法統攝具體知識,具體解決問題的方法,逐步形成和發展數學能力.
為了使學生掌握必要的數學思想和方法,需要在教學中結合內容逐步滲透,而不能脫離內容形式地傳授.本課中,我們有意識地突出“分類討論”這一數學思想方法,并在教學中注意滲透兩點:
1.分類的標準不同,分類的結果也不相同;
2.分類的結果應是無遺漏、無重復,即每一個數必須屬于某一類,又不能同時屬于不同的兩類.
七年級教案數學篇6
教學目標 1, 掌握相反數的概念,進一步理解數軸上的點與數的對應關系;
2, 通過歸納相反數在數軸上所表示的點的特征,培養歸納能力;
3, 體驗數形結合的思想。
教學難點 歸納相反數在數軸上表示的點的特征
知識重點 相反數的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 問題1:請將下列4個數分成兩類,并說出為什么要這樣分類
4, -2,-5,+2
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)
思考結論:教科書第13頁的思考
再換2個類似的數試一試。
歸納結論:教科書第13頁的歸納。 以開放的形式創設情境,以學生進行討論,并培養分類的能力
培養學生的觀察與歸納能力,滲透數形思想
深化主題提煉定義 給出相反數的定義
問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的相反數是什么?為什么?
學生思考討論交流,教師歸納總結。
規律:一般地,數a的相反數可以表示為-a
思考:數軸上表示相反數的兩個點和原點有什么關系?
練一練:教科書第14頁第一個練習 體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。
深化相反數的概念;“零的相反數是零”是相反數定義的一部分。
強化互為相反數的數在數軸上表示的點的幾何意義
給出規律
解決問題 問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數是-5和+5
練一練:教科書第14頁第二個練習 利用相反數的概念得出求一個數的相反數的方法
小結與作業
課堂小結 1, 相反數的定義
2, 互為相反數的數在數軸上表示的點的特征
3, 怎樣求一個數的相反數?怎樣表示一個數的相反數?
本課作業 1, 必做題 教科書第18頁習題1.2第3題
2, 選做題 教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征.這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想.
2,教學引人以開放式的問題人手,培養學生的分類和發散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法.
3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發揮的余地.
七年級教案數學篇7
一、指導思想:
本學期我以伊春市“一年打基礎,三年上臺階,五年打個翻身仗”的總體工作目標為指針,以“提高教學實效性”為工作中心,力爭讓每個學生在原有基礎上都有所提高。忠誠于黨的教育事業,立足教壇,無私奉獻,全心全意地搞好教學工作。堅守高尚情操,發揚奉獻精神,自覺抵制社會不良風氣影響,不利用職責之便謀取私利,做一名合格的人民教師。
二、工作目標:
通過本期教學,使學生形成一定的數學素質,能自覺運用數學知識解決生活中的數學問題,形成扎實的數學基本功,為今后繼續學習數學打下良好的基礎。培養一批數學尖子,能掌握科學的學習方法。不及格人數較少。形成良好學風。形成良好的數學學習習慣。形成融洽的師生關系。使學生在德、智、體各方面全面發展。
(一)多方面學習,樹立新理念
開學初就要認真通讀數學新課程標準,潛心研究,反復揣摩。以《數學課程標準》基本理念為依據是用好教材的前提,所以一定要認真領會《標準》編導意圖,去指導教學實踐,以便采取靈活、有效的教學方法,使數學教學真正面向全體學生,促進學生全面、持續、和諧的發展。
(二)掌握學生心理特征,激發他們學習數學的積極性。
學生由小學進入中學,在心理上發生了較大的變化,開始要求“獨立自主”但學生環境的更換并不等于他們已經具備了中學生的諸多能力。因此對學習道路上的困難估計不足。鑒于這些心理特征,教師必須十分重視激發學生的求知欲,有目的地時時地向學生介紹數學在日常生活中的應用,還要想辦法讓學生親身體驗生活離開數學知識將無法進行。從而激發他們學習數學知識的直接興趣。同時在言行上,教師要切忌傷害學生的自尊心。如初一學生普遍保留小學階段積極舉手發言的良好習慣,面對孩子們這種學習熱情,教師應該表示贊賞,給予肯定,同時盡可能讓更多的學生有輪流發言的機會。
(三)以課堂教學為主陣地
(1)在教師這方面,首先做到要通讀教材,駕馭教材,認真備課,認真備學生,認真備教法。對所講知識的每一環節的過渡都要精心設計。給學生出示的問題也要有層次,有梯度,知識的達標程度教師更要掌握,使優生吃飽,差生吃好。在學生方面,把學生按座次和成績分成學習小組,選出小組長,在課堂上發揮小組的集體力量,這樣用輔優,幫差,帶中間的方法來大面積提高教學質量
(2)重視學生能力的培養。
小學六年級的數學是培養學生運算能力,發展思維能力和綜合運用知識解決實際問題的.能力,從而培養學生的創新意識。根據當前素質教育和新課改的的精神,在教學中我著重對學生進行上述幾方面能力的培養。在教學中盡量做到“學生自學能學會的不講”;“在教師的引導下能自己總結的不講”;“在教師的引導下學生互相幫助下能學會的不講。”從而培養學生的自主、合作、探究能力。充分發揮學生的主體作用,把學生的潛能全部挖掘出來。
(四)指導學生運用科學的學習方法
小學階段科目少,內容淺,學生學習方法即使差一些,只要用心,用功,總可以應付。但是一進中學,有些學生縱然很努力,成績依舊上不去,這說明中學階段學習方法問題已成為突出問題,這就要求學生必須掌握知識的內存規律,不僅要知其然,還要知其所以然,以逐步提高分析、判斷、綜合、歸納的解題能力,我向學生介紹的方法是:“兩先,兩后,”既先預習,后聽課;先復習,后做作業。也就是引導學生課前做好預習,發現問題,帶著問題有目的性的聽課,效果會更好。課后注意及時復習鞏固以及經常復習鞏固,使學過的知識達到永久記憶,遺忘緩慢。如果學生能真正按照此方法,再加之自己特有的經驗,一定是學起來輕松愉悅,成績優異的。
三、工作重點:
讓學生熱愛數學,并且掌握一定的學習方法,提高平均分和優秀率上漲的幅度,減少學困生。
總之本學期的教學工作任務還有很多,需要在今后的實際工作中進一步補充和完善。
七年級教案數學篇8
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:探索和掌握平行公理及其推論.
學習難點:對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
七年級教案數學篇9
垂線
[教學目標]
1. 理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2. 掌握點到直線的距離的概念,并會度量點到直線的距離。
3. 掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一. 復習提問:
1、 敘述鄰補角及對頂角的定義。
2、 對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作 ,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1 過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中 (我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2 連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點 P到直線l的距離。
七年級教案數學篇10
教學目標:
1、通過現實情景感受利用有序數對表示位置的廣泛性,能利用有序數對來表示位置。
2、讓學生感受到可以用數量表示圖形位置,幾何問題可以轉化為代數問題,形成數形結合的意識。
教學重點:理解有序數對的概念,用有序數對來表示位置。
教學難點:理解有序數對是“有序的”并用它解決實際問題,課時安排:1課時
教學過程
一、創設問題情境,引入新課
展示書P105畫面并提出問題,在建國50周年的慶典活動中,天安門廣場上出現了壯觀的背景圖案,你知道它是怎么組成的嗎?
原來,他們舉起不同顏色的花束(如第10排第25列舉紅花,第28排第30列舉黃花)整個方陣就組成了絢麗的背景圖章。類似用“第幾排第幾列”來確定同學的位置,我們在日常生活中經常用的方法。
二、師生共同參于教學活動
(1)影院對觀眾席所有的座位都按“幾排幾號”編號,以便確定每個座位在影院中的位置觀眾根據入場券上的“排數”和“號數”準確入座。
師:只給一個數據如“第5號”你能確定某個同學的位置嗎?為什么?要確定必須怎樣?
生:不能,要確定還必須知道“排數”。
(2)教師書寫平面圖通知,由學生分組討論。
今天以下座位的同學放學后參加數學問題討論:(1,5),(2,4),(4,2),(3,3),(5,6)。
師:你們能明白它的意思嗎?
學生通過交流合作后得到共識:規定了兩個數所表示的含義后就可以表示座位的位置。
師:請同學們思考以下問題:
①怎樣確定你自己的座位的位置?
②排數和列數先后須序對位置有影響嗎?
生:通過討論,交流后得到以下共識:
①可用排數和列數兩個不同的數來確定位置。
②排數和列數的先后須序對位置有影響。
(3)讓學生的問題都是通過像“9排8號”,第2列第4排,這樣含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義。例如前面的表示“排數”后面的表示“列數”。我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)。
(4)在生活中還有用有序數對表示一個位置的例子嗎?
學生分組討論,交流,教師深入小組參與活動,傾聽學生的交流,并對學生提供的生活素材給予肯定和鼓勵。
例如:人們常用經緯度來表示,地球上的地點
三、鞏固練習
讓學生完成p46的練習。
四、布置作業
1、課本習題6,1,1。
2、“怪獸吃豆豆”是一種計算機游戲,圖中標志表示“怪獸”按圖中箭頭先后經過的幾個位置,如果用(1,2)表示“怪獸”按圖中箭頭所指路線經過的第3個位置,那么你能用同樣的方式表示出圖中“怪獸”經過的其他幾個位置嗎?
12345678
五、教后反思
師:談談本節課,你有哪些收獲?
由同學交流解決問題,教師設疑為以后的學習奠定基礎。
七年級教案數學篇11
教學目標:
【知識與技能】
了解平方根與算術平方根的概念,理解負數沒有平方根及非負數開平方的意義。
【過程與方法】
理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示,能用科學計算器求平方根及其近似值。
【情感、態度與價值觀】
體會平方與開平方這一對互逆運算的辯證關系,感受平方根在現實世界中的客觀存在,增強數學知識的應用意識。
【教學重點】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示。
【教學難點】會用平方根的概念求某些數的平方根,并能用根號加以表示。
【教具準備】小黑板科學計算器
【教學過程】
一、導入
1、通過七年級的學習,相信同學們都對數學這門課程有了更深入的認識,這個學期,我們將一起來學習八年級的數學知識,這個學期的知識將會更加有趣。
2、板書:實數1.1平方根
二、新授
(一)探求新知
1、探討:有面積為8平方厘米的正方形嗎?如果有,那它的邊長是多少?(少數學習超前的學生可能能答上來)這個邊長是個怎樣的數?你以前見過嗎?
2、引入“無理數”的概念:像(2.82842712……)這樣無限不循環的小數就叫做無理數。
3、你還能舉出哪些無理數?(,)、、1/3是無理數嗎?
4、有理數和無理數統稱為實數。
(二)知識歸納:
1、板書:1.1平方根
2、李老師家裝修廚房,鋪地磚10.8平方米,用去正方形的地磚120塊,你能算出所用地磚的邊長是多少嗎?(0.3米)
3、怎么算?每塊地磚的面積是:10.8120=0.09平方米。
由于0.32=0.09,因此面積為0.09平方米的正方形,它的邊長為0.3米。
4、練習:
由于()=400,因此面積為400平方厘米的正方形,它的邊長為()厘米。
5、在實際問題中,我們常常遇到要找一個數,使它的平方等于給定的數,如已知一個數a,要求r,使r2=a,那么我們就把r叫做a的一個平方根。(也可叫做二次方根)
例如22=4,因此2是4的一個平方根;62=36,因此6是36的一個平方根。
6、說一說:9,16,25,49的一個平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,還有別的數嗎?
2、學生探究:因為(-2)2=4,因此-2也是4的一個平方根。
3、除了2和-2以外,4的平方根還有別的數嗎?(4的平方根有且只有兩個:2與-2。)
4、結論:如果r是正數a的一個平方根,那么a的平方根有且只有兩個:r與-r。
5、我們把a的正平方根叫做a的算術平方根,記作,讀作:“根號a”;把a的負平方根記作-。
6、0的平方根有且只有一個:0。0的平方根記作,即=0。
7、負數沒有平方根。
8、求一個非負數的平方根,叫做開平方。
(四)鞏固練習:
1、分別求下列各數的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用號表示)
2、分別求下列各數的算術平方根:100,16/25,0.49。(10,4/5,0.7)
三、小結與提高:
1、面積是196平方厘米的正方形,它的邊長是多少厘米?
2、求算術平方根:81,25/144,0.16
七年級教案數學篇12
教學目的
借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。
四、作業
教科書習題6.3.2,第1至5題。
七年級教案數學篇13
正數和負數
教學目標:
1.了解正數與負數是實際生活的需要.
2.會判斷一個數是正數還是負數.
3.會用正負數表示互為相反意義的量.
教學重點:會判斷正數、負數,運用正負數表示具有相反意義的量,理解表示具有相反意義的量的意義.
教學難點:負數的引入.
教與學互動設計:
(一)創設情境,導入新課
課件展示珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況.
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7℃和零下5℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.
想一想以上都是一些具有相反意義的量,你能用小學算術中的數來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規定為負的,正的量用算術里學過的數表示,負的量用學過的數前面加上“-”(讀作負)號來表示(零除外).
活動每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數表示.
討論什么樣的數是負數?什么樣的數是正數?0是正數還是負數?自己列舉正數、負數.
總結正數是大于0的數,負數是在正數前面加“-”號的數,0既不是正數,也不是負數,是正數與負數的分界點.
(三)應用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數表示.
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02g,記作+0.02g,那么-0.03g表示什么?
【例3】某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應記為()
A.3B.-3C.-2.5D.-7.45
【點撥】讀懂題意是解決本題的關鍵.7:45與10:00相差135分鐘.
(四)總結反思,拓展升華
為了表示現實生活中具有相反意義的量引進了負數.正數就是我們過去學過(除零外)的數,在正數前加上“-”號就是負數,不能說“有正號的數是正數,有負號的數是負數”.另外,0既不是正數,也不是負數.
1.下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負數的方法記賬,你還可以怎樣記賬?比較各種記賬的優劣.
2.數學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負號)表示“蹲”.
(1)由一個同學大聲喊:+1,-2,-3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲.
(五)課堂跟蹤反饋
夯實基礎
1.填空題:
(1)如果節約用水30噸記為+30噸,那么浪費20噸記為噸.
(2)如果4年后記作+4年,那么8年前記作年.
(3)如果運出貨物7噸記作-7噸,那么+100噸表示.
(4)一年內,小亮體重增加了3kg,記作+3kg;小陽體重減少了2kg,則小陽增加了.
2.中午12時,水位低于標準水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.
(1)用正數或負數記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3.糧食每袋標準重量是50公斤,現測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數表示,請用正數和負數記錄甲、乙、丙三袋糧食的超重數和不足數.
(六)課時小結
1.與以前相比,0的意義又多了哪些內容?
2.怎樣用正數和負數表示具有相反意義的量?(用正數表示其中具有一種意義的
七年級教案數學篇14
初一上冊數學教案,歡迎各位老師和學生參考!
學習目標:1、理解有理數的絕對值和相反數的意義。
2、會求已知數的相反數和絕對值。
3、會用絕對值比較兩個負數的大小。
4、經歷將實際問題數學化的過程,感受數學與生活的聯系。
學習重點:1.會用絕對值比較兩個負數的大小。
2.會求已知數的相反數和絕對值。
學習難點:理解有理數的絕對值和相反數的意義。
學習過程:
一、創設情境
根據絕對值與相反數的意義填空:
1、
2、
-5的相反數是______,-10.5的相反數是______,的相反數是______;
3、0=______,0的相反數是______。
二、探索感悟
1、議一議
(1)任意說出一個數,說出它的絕對值、它的相反數。
(2)一個數的絕對值與這個數本身或它的相反數有什么關系?
2、想一想
(1)2與3哪個大?這兩個數的絕對值哪個大?
(2)-1與-4哪個大?這兩個數的絕對值哪個大?
(3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?
(4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?
三.例題精講
例1.求下列各數的絕對值:
+9,-16,-0.2,0.
求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?
(2)數軸上的點的大小是如何排列的?
例2比較-10.12與-5.2的大小。
例3.求6、-6、14、-14的絕對值。
小節與思考:
這節課你有何收獲?
四.練習
1.填空:
⑴的符號是,絕對值是;
⑵10.5的符號是,絕對值是
⑶符號是+號,絕對值是的數是
⑷符號是-號,絕對值是9的數是;
⑸符號是-號,絕對值是0.37的數是.
2.正式足球比賽時所用足球的質量有嚴格的規定,下表是6個足球的質量檢測結果(用正數記超過規定質量的克數,用負數記不足規定質量的克數).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數的大小
(1)-0.7與-1.7(2)(3)(4)-5與0
五、布置作業:
P25習題2.35
家庭作業:《評價手冊》《補充習題》
六、學后記/教后記
這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!
七年級教案數學篇15
有理數
教學目標
1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數學上的常用處理問題的方法。
教學難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數的概念
教學過程(師生活動) 設計理念
探索新知 在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.??…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數。
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
也可以教師說出一些數,讓學生進行判斷。
集合的概念不必深入展開。
創新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。
有理數 這個分類可視學生的程度確定是否有必要教學。
應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結與作業
課堂小結 到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業 1, 必做題:教科書第18頁習題1.2第1題
2, 教師自行準備
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概
念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進
行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分
類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
