七年級數(shù)學教案萬能
編寫教案可以幫助教師明確教學目標、教學內容和教學步驟,更好地規(guī)劃教學流程,提高教學效率。怎樣才能寫好七年級數(shù)學教案萬能?這里給大家提供七年級數(shù)學教案萬能,方便大家學習。
七年級數(shù)學教案萬能篇1
第一章一元一次不等式組
1.1一元一次不等式組
第1教案
教學目標
1.能結合實例,了解一元一次不等式組的相關概念。
2.讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的&39;“轉化”思想方法。
3.提高分析問題的能力,增強數(shù)學應用意識,體會數(shù)學應用價值。
教學重、難點
1..不等式組的解集的概念。
2.根據(jù)實際問題列不等式組。
教學方法
探索方法,合作交流。
教學過程
一、引入課題:
1.估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。
2.由許多問題受到多種條件的限制引入本章。
二、探索新知:
自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。
分別解出兩個不等式。
把兩個不等式解集在同一數(shù)軸上表示出來。
找出本題的答案。
三、抽象:
教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)
七年級數(shù)學教案萬能篇2
教學目標
1.使學生理解正數(shù)與負數(shù)的概念,并會判斷一個給定的數(shù)是正數(shù)還是負數(shù);
2. 會初步應用正負數(shù)表示具有相反意義的量;
3.使學生初步了解有理數(shù)的意義,并能將給出的有理數(shù)進行分類;
4.培養(yǎng)學生逐步樹立分類討論的思想;
5. 通過本節(jié)課的教學,滲透對立統(tǒng)一的辯證思想。
教學建議
一、重點、難點分析
本課的重點是了解正數(shù)與負數(shù)是由實際需要產生的以及有理數(shù)包括哪些數(shù)。難點是學習負數(shù)的必要性及有理數(shù)的分類。關鍵是要能準確地舉出具有相反意義的量的典型例子以及要明確有理數(shù)分類的標準。
正、負數(shù)的引入,有各種不同的方法。教材是由學生熟知的兩個實例:溫度與海拔高度引入的。比0℃高5攝氏度記作5℃,比0 ℃低5攝氏度,記作-5℃;比海平面高8848米,記作8848米,比海平面低155米記作-155米。由這兩個實例很自然地,把大于0的數(shù)叫做正數(shù),把加“-”號的數(shù)叫做負數(shù);0既不是正數(shù)也不是負數(shù),是一個中性數(shù),表示度量的“基準”。這樣引入正、負數(shù),不僅有利于學生正確使用正、負數(shù)表示具有相反意義的量,而且還將幫助學生理解有理數(shù)的大小性質。把負數(shù)理解為小于0的數(shù)。教材中,沒有出現(xiàn)“具有相反意義的量”的概念。這是有意回避或淡化這個概念。目的是,從正、負數(shù)引入一開始就能較深刻的揭示正、負數(shù)和零的性質,幫助學生正確理解正、負數(shù)的概念。
關于有理數(shù)的分類要明確的是:分類標準不同,分類結果也不同,分類結果應是不重不漏,即每一個數(shù)必須屬于某一類,又不能同時屬于不同的兩類。
二、教法建議
這節(jié)課是在小學里學過的數(shù)的基礎上,從表示具有相反意義的量引進負數(shù)的.從內容上講,負數(shù)比非負數(shù)要抽象、難理解.因此在教學方法和教學語言的選擇上,盡可能注意中小學的銜接,既不違反科學性,又符合可接受性原則。例如,在講解有理數(shù)的概念時,讓學生清楚地認識有理數(shù)與算術數(shù)的根本區(qū)別,有理數(shù)是由兩部分組成:符號部分和數(shù)字部分(即算術數(shù)).這樣,在理解算術數(shù)和負數(shù)的基礎上,對有理數(shù)的概念的理解就簡便多了.
為了使學生掌握必要的數(shù)學思想和方法,在明確有理數(shù)的分類時,可以有意識地滲透分類討論的思想方法,理解分類的標準、分類的結果,以及它們的相互聯(lián)系。通過正數(shù)、負數(shù)都統(tǒng)一于有理數(shù),可以將對立統(tǒng)一的辯證思想的逐步樹立滲透到日常教學中。
三、正數(shù)與負數(shù)概念的理解
1﹒對于正數(shù)和負數(shù)的概念,不能簡單的理解為:帶“+”號的數(shù)是正數(shù),帶“-”號的數(shù)是負數(shù)。
2﹒引入負數(shù)后,數(shù)的范圍擴大為有理數(shù),奇數(shù)和偶數(shù)的外延也由自然數(shù)擴大為整數(shù),整數(shù)也可以分為奇數(shù)和偶數(shù)兩類,能被2整除的數(shù)是偶數(shù),如…-6,-4,-2,0,2,4,6…,不能被2整除的數(shù)是奇數(shù),如…-5,-4,-2,1,3,5…
3﹒到現(xiàn)在為止,我們學過的數(shù)細分有五類:正整數(shù)、正分數(shù)、0、負整數(shù)、負分數(shù),但研究問題時,通常把有理數(shù)分為三類:正數(shù)、0、負數(shù),進行討論。
4﹒通常把正數(shù)和0統(tǒng)稱為非負數(shù),負數(shù)和0統(tǒng)稱為非正數(shù),正整數(shù)和0稱為非負整數(shù);負整數(shù)和0統(tǒng)稱為非正整數(shù)。
四、有理數(shù)的分類
整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。1)正整數(shù)、零、負整數(shù)統(tǒng)稱為整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱為分數(shù)。
2)整數(shù)也可以看作分母為1的分數(shù),但為了研究方便,本章中分數(shù)是指不包括整數(shù)的分數(shù)。
3)注意概念中所用“統(tǒng)稱”二字,它與說“整數(shù)和分數(shù)是有理數(shù)”的意思不大一樣。前者回避了分數(shù)是否包括整數(shù)的問題,即使把整數(shù)包括在分數(shù)范圍內,說“統(tǒng)稱”還是不錯,而用后一種說法就欠妥了。
4)分數(shù)和小數(shù)的區(qū)別:
分數(shù)(既約分數(shù))都可表示成小數(shù),但不是所有的小數(shù)都能表示成分數(shù)的。
5)到目前為止,所學過的數(shù)(除π外)都是有理數(shù)。
七年級數(shù)學教案萬能篇3
一、教學內容
人教版一年級數(shù)學下冊P43。
二、教學目標
1、通過具體的情境讓學生感知100以內數(shù)的多少,會用“多一些、少一些、多得多、少得多”描述兩個數(shù)之間的大小關系。
2、培養(yǎng)學生觀察、分析、比較等多種能力,培養(yǎng)數(shù)感。
3、能在具體情境中把握數(shù)的相對大小關系,用自己的語言描述數(shù)之間的相對大小關系。
4、使學生感受到數(shù)學與生活的聯(lián)系。
三、教學重難點
重點:結合生活實際,理解“多一些、少一些、多得多、少得多”等詞語的含義并能運用詞語表述。
難點:弄清“多一些、多得多”,“少一些、少得多”詞語間的差別。
四、教學過程
(一)游戲導入
老師在紙上寫一個數(shù)字,由一個學生當小老師點幾個學生的學號來回答老師問題,由學生與老師之間的回答來引入多一些、少一些、多得多、少得多表示數(shù)的大小程度的詞語。
(二)講授新課
1、說一說,對比感悟
師:同學們,你們喜歡寫字嗎?今天動物王國里面有幾個小動物也在寫字(分別是小青蛙、小老鼠),看看他們有什么問題要我們解決的。
小青蛙寫了14個字,小老鼠寫了12個字,誰寫的多?誰寫的少?你知道他們之間的數(shù)量關系是怎么樣的嗎?(在這里引出多一些、少一些的知識點)
小青蛇看見他們在寫字也加入他們的隊伍,它寫了72個字,那現(xiàn)在小青蛇和小青蛙、小老鼠他們之間的數(shù)量關系又是怎么樣的呢?
(在這里引出多得多、少得多的知識點)
2、通過引導學生分析、比較、交流,加深了解
動物王國里面的國王看見他們那么愛好學習,于是給他們頒發(fā)了獎品(彩筆),獎品設為一等獎、二等獎和三等獎,讓學生根據(jù)提示來說出答案,理解詞語(多一些、多得多,少一些、少得多)的意思。
(三)舉一反三,鞏固應用
1、出示課本43頁做一做
2、課本45頁第4題
(四)闖關(運用知識)
咱們班的小朋友真聰明,老師看見你們表現(xiàn)很棒,給你們設了兩個個難關,你們相信自己能闖關嗎?
第一關比較時間
第二關比較價格
(五)做一做課本45頁數(shù)學游戲
(六)這節(jié)課你學會了什么新知識?你能用今天的知識說一說身邊的事物嗎?
五、板書設計
()比()多一些()比()少一些
()比()多得多()比()少得多
七年級數(shù)學教案萬能篇4
教學目標
1.使學生在了解意義基礎上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2.通過運算,培養(yǎng)學生的運算能力;
3.通過教材給出的行程問題,認識數(shù)學來源于實踐并反作用于實踐。
教學重點和難點
重點:依據(jù)法則,熟練進行運算;
難點:有理數(shù)乘法法則的理解.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.計算(-2)+(-2)+(-2).
2.有理數(shù)包括哪些數(shù)?小學學習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))
3.有理數(shù)加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)
4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引導學生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結論,應用此結論,3×(-2)=?(-3)×(-2)=?(學生答)
把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導學生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
任何數(shù)同0相乘,都得0.
繼而教師強調指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學學習的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”.
用有理數(shù)乘法法則與小學學習的乘法相比,由于介入了負數(shù),使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結為小學的乘法了.
因此,在進行有理數(shù)乘法時,需要時時強調:先定符號后定值.
三、運用舉例,變式練習
例1 計算:
例2 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.
(1)t小時后溫度是多少?
(2)當a,t分別是下列各數(shù)時的結果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教師引導學生檢驗一下(2)中各結果是否合乎實際.
課堂練習
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學生自己總結:一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調指出,a可以是正數(shù),也可以是負數(shù)或0;-a未必是負數(shù),也可以是正數(shù)或0.
3.當a,b是下列各數(shù)值時,填寫空格中計算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判斷下列方程的解是正數(shù)還是負數(shù)或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結
今天主要學習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”.
五、作業(yè)
1.計算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.計算:
3.填空(用“>”或“<”號連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時,那么a ____________2a;
(4)如果a<0時,那么a __________2a.
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經(jīng)過若干次翻轉,把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.
七年級數(shù)學教案萬能篇5
教學目標:
1、通過填寫百數(shù)表,使學生清楚地了解100以內數(shù)的排列順序,構建數(shù)與數(shù)之間的關系,深化學生對數(shù)概念的理解,培養(yǎng)學生的數(shù)感。
2、通過觀察,分析百數(shù)表,探究100以內數(shù)的規(guī)律,并培養(yǎng)學生探究的樂趣,發(fā)展學生的思維。
教學重點和難點:
1、發(fā)現(xiàn)100以內數(shù)的排列順序的一般規(guī)律。
2、初步構建數(shù)之間的關系,建立數(shù)感。
教學過程:
一、創(chuàng)設情境,揭示課題。
由小精靈帶來一張藏寶圖引出“百數(shù)表”
二、解構百數(shù)表,探索數(shù)的規(guī)律。
1、觀察百數(shù)表,找規(guī)律。
出示41頁百數(shù)表第一、二行所給的數(shù),觀察:這些數(shù)有什么特點呢?按照這個順序,你能填出它們之間的數(shù)嗎?
依次出示兩支特殊的數(shù)隊伍(兩個斜行),有什么特殊的地方呢?
剩下的數(shù)你能填出來嗎?(學生按一定順序把百數(shù)表填完整)。
2、涂色,找規(guī)律。
(1)完成41頁例4(1)的涂色活動。并交流涂色中發(fā)現(xiàn)的規(guī)律。
(2)你還發(fā)現(xiàn)哪些新的規(guī)律了嗎?
自己觀察,想一想。
和同桌或前后桌小朋友說一說。
全班交流。
3、課堂小結。
三、依據(jù)規(guī)律,拓展提升。
1、給數(shù)找家:
(1)34和56
(2)78和45
2、完成41頁“做一做”
四、全課總結
這節(jié)課,我們學習了什么?你有什么收獲?
七年級數(shù)學教案萬能篇6
一、教學目標
1.初步理解絕對值的意義,掌握求有理數(shù)的絕對值的方法,并會求有理數(shù)的絕對值.
2.利用絕對值解決?些簡單的實際問題.
3.使學生初步了解數(shù)形結合的思想方法.
4.通過應用絕對值解決實際問題,培養(yǎng)學生濃厚的學習興趣,體會絕對值的意義和作用,感受數(shù)學在生活中的&39;價值.
二、教法設計
通過實體模型或問題實例創(chuàng)設學生參與情景,在自主看書尋找問題答案后探求絕對值的意義及應用.
三、教學重點和難點
重點:初步理解絕對值的意義,會求一個有理數(shù)的絕對值.
難點:對絕對值意義的初步理解.
四、課時安排
1課時
五、師生互動活動設計
自主、探究、合作、交流.
六、教學思路
(一)、導入
1.教師拿出準備好的數(shù)軸模型,讓學生觀察后擺放在講臺前,叫兩個學生站在繩上標有點12、點6的位置,讓其他學生觀察度量后回答:這兩個同學與原點的距離各是多少?
另外叫兩個學生分別站在繩上標有點一6、點一12的位置,其他學生觀察度量后回答:這兩個同學與原點的距離各是多少?
(給學生充分的時間思考,相互討論、探討.)
或:創(chuàng)設問題情景
掛出畫有數(shù)軸的磁性黑板,兩只小狗分別站在數(shù)軸上原點的左、右兩側3個單位的點上,向它離開原點的距離各是多少?(激情引趣,導人新課)
2.概念的引述.
教師引導學生看書自學后,舉例說明:什么是一個數(shù)的絕對值?如何表示一個數(shù)的絕對值?
(叫學生板書)
(學生在自學的基礎上,可相互合作、探討,教師參與學生的討論,并進行個別指導.)
3.引導學生思考書中“想一想”:互為相反數(shù)的兩個數(shù)的絕對值有什么關系?
(在學生充分思考后,教師要引導學生相互說,并叫5個學生上黑板舉例說明這個關系.)
(二)、新知識運用
略
四、知識拓展
師生互動,先要求學
思考、解決,再在組內互相交流.
五、小結
1.知識點:
(1)絕對值的定義二
(2)一個數(shù)的絕對值與這個數(shù)的關系.
2.數(shù)學思想方法:數(shù)形結合的思想.(培養(yǎng)學生總結能力)
七年級數(shù)學教案萬能篇7
教學目標
1.會解由兩個一元一次不等式組成的不等式組,會用數(shù)軸確定解決。
2.讓學生進一步感受數(shù)形結合的作用,逐步熟悉和掌握這一重要思想方法。
3.培養(yǎng)勇于開拓創(chuàng)新的精神。
教學重點
解決由兩個不等式組成的不等式組。
教學難點
學生歸納解一元一次不等式組的步驟。
教學方法
合作交流,自己探究。
教學過程
一、做一做。
1.分別解不等式x+4>3。。
2.將1中各不等式解集在同一數(shù)軸上表示出來。
3.說一說不等式組的解集是什么?
4.討論交流,怎樣解一元一次不等式組?
二、新課
1.解不等式組的概念。
2.例1:解不等式組:
教師講解,提醒學生注意防止出現(xiàn)符號錯誤和運算錯誤。注意“<”和“”在數(shù)軸表示時的差別。
3.例2:解不等式組:
學生解出不等式(1)、(2)。并把解集表示在同一數(shù)軸上。討論:本不等式組的解集是什么?
4.例3:解不等式組:
解出不等式(1)、(2)。并把解集表示在同一數(shù)軸上。
討論:本不等式組的解集是什么?(空集)
說明:本題可說“這個不等式組無解”或“這個不等式組的解集是空集”。簡單介紹“空集”。
5.思考:
(1)說出下列不等式組的解集:
①②③④
(2)討論(1)中有什么規(guī)律?
三、練習
1.P8練習題。
2.如果a>b,說說下列不等式組的解集。
①②③
3.如果不等式組的解集是x>a。
那么a____3(填“>”“<”“≤”或“≥”)
四、小結。
說一說怎樣解不等式組?
五、作業(yè)。
習題1.2A組題
選作B組題。后記:
七年級數(shù)學教案萬能篇8
一、教學目標
1.了解推理、證明的格式,理解判定定理的證法.
2.掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證.
3.通過第二個判定定理的推導,培養(yǎng)學生分析問題、進行推理的能力.
4.使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的教育.
二、學法引導
1.教師教法:啟發(fā)式引導發(fā)現(xiàn)法.
2.學生學法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維.
三、重點·難點及解決辦法
(一)重點
判定定理的推導和例題的解答.
(二)難點
使用符號語言進行推理.
(三)解決辦法
1.通過教師正確引導,學生積極思維,發(fā)現(xiàn)定理,解決重點.
2.通過教師指導,學生自行完成推理過程,解決難點及疑點.
四、課時安排
1課時
五、教具學具準備
三角板、投影儀、自制膠片.
六、師生互動活動設計
1.通過設計練習,復習基礎,創(chuàng)造情境,引入新課.
2.通過教師指導,學生探索新知,練習鞏固,完成新授.
3.通過學生自己總結完成小結.
七、教學步驟
(一)明確目標
掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養(yǎng)學生的邏輯思維能力.
(二)整體感知
以情境創(chuàng)設,設計懸念,引出課題,以引導學生的思維,發(fā)現(xiàn)新知,以變式訓練鞏固新知.
(三)教學過程
創(chuàng)設情境,復習引入
師:上節(jié)課我們學習了平行線的判定公理和一種判定方法,根據(jù)所學看下面的問題(出示投影).
學生活動:學生口答第1、2題.
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行.
教師將第3題圖形畫在黑板上.
學生活動:學生口答理由,同角的補角相等.
師:要求學生寫出符號推理過程,并板書.
【教法說明】
本節(jié)課是前一節(jié)課的繼續(xù),是在前一節(jié)課的基礎上進行學習的,所以通過第1、2兩題復習上節(jié)課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行.第3題是為推導本節(jié)到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點.
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?
學生活動:同分內角.
師:它們有什么關系.
學生活動:互補.
師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題.
七年級數(shù)學教案萬能篇9
教學目標 1,掌握絕對值的概念,有理數(shù)大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數(shù)的大小.
3.體驗數(shù)學的概念、法則來自于實際生活,滲透數(shù)形結合和分類思想.
教學難點 兩個負數(shù)大小的比較
知識重點 絕對值的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數(shù)表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;
觀察并思考:畫一條數(shù)軸,原點表示學校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數(shù)的正負性無關;
一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負數(shù)表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體驗數(shù)學知識與生活實際的聯(lián)系.
因為絕對值概念的幾何意義是數(shù)形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.
合作交流
探究規(guī)律 例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
-3,5,0,+58,0.6
要求小組討論,合作學習.
教師引導學生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結合相反數(shù)的意義,最后總結得出求絕對值法則(見教科書第15頁).
鞏固練習:教科書第15頁練習.
其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數(shù)和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別. 求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例.
學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.
結合實際發(fā)現(xiàn)新知 引導學生看教科書第16頁的圖,并回答相關問題:
把14個氣溫從低到高排列;
把這14個數(shù)用數(shù)軸上的點表示出來;
觀察并思考:觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數(shù)可以比較大小嗎?
應怎樣比較兩個數(shù)的大小呢?
學生交流后,教師總結:
14個數(shù)從左到右的順序就是溫度從低到高的順序:
在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù).
在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
想象練習:想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關系.
要求學生在頭腦中有清晰的圖形. 讓學生體會到數(shù)學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點學生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結合起來來了解,所以配置想象練習 ,加強數(shù)與形的想象。
課堂練習 例2,比較下列各數(shù)的大小(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式
練習:第18頁練習
小結與作業(yè)
課堂小結 怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大小?
本課作業(yè) 1, 必做題:教產書第19頁習題1,2,第4,5,6,10
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,情景的創(chuàng)設出于如下考慮:①體現(xiàn)數(shù)學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數(shù)學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣.②教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質是將數(shù)轉化為形來解釋,是難點),然后通過練習歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受.
2, 一個數(shù)絕對值的法則,實際上是絕對值概念的直接應用,也體現(xiàn)著分類的數(shù)學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3, 有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規(guī)定:“在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序”,幫助學生建立“數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小”這個數(shù)形結合的模型.為此設置了想象練習.
4,本節(jié)課的內容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學。 一.教學目標: 1.認知目標: 1)了解二元一次方程組的概念。 2)理解二元一次方程組的解的概念。 3)會用列表嘗試的方法找二元一次方程組的解。 2.能力目標: 1)滲透把實際問題抽象成數(shù)學模型的思想。 2)通過嘗試求解,培養(yǎng)學生的探索能力。 3.情感目標: 1)培養(yǎng)學生細致,認真的學習習慣。 2)在積極的教學評價中,促進師生的情感交流。 二.教學重難點 重點:二元一次方程的意義及二元一次方程的解的概念。 難點:把一個二元一次方程形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程。 三.教學過程 (一)創(chuàng)設情景,引入課題 1.本班共有40人,請問能確定男女生各幾人嗎?為什么? (1)如果設本班男生_人,女生y人,用方程如何表示?(_+y=40) (2)這是什么方程?根據(jù)什么? 2.男生比女生多了2人。設男生_人,女生y人.方程如何表示?_,y的值是多少? 3.本班男生比女生多2人且男女生共40人.設該班男生_人,女生y人。方程如何表示? 兩個方程中的_表示什么?類似的兩個方程中的y都表示? 像這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。 4.點明課題:二元一次方程組。 (設計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學) (二)探究新知,練習鞏固 1.二元一次方程組的概念 (1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。 [讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.] (2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。 ①_2+y=0②y=2_+4③y+?_④_=2/y+1⑤(_+y)/3-2=0 (設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)的思考”,進而完善血生對二元一次方程概念的理解。) 2.二元一次方程組的解的概念 (1)由學生給出引例的答案,教師指出這就是此方程組的解。 (2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p> 方程_+y=0的解,方程2_+3y=2的解,方程組的解。 (3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。 (4)練習:已知是方程組的解,求a,b的值。 (三)合作探索,嘗試求解 現(xiàn)在我們一起來探索如何尋找方程組的解呢? 1.已知兩個整數(shù)_,y,試找出方程組的解. 學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。 一般思路:由一個方程取適當?shù)腳y的值,代到另一個方程嘗試. (設計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學活動的經(jīng)驗) 2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。 (1)設該同學“紅雙喜”二星乒乓球買了_盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于_、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。 由學生獨立完成,并分析講解。 3.例已知方程3_+2Y=10 ⑴當_=2時,求所對應的Y的值; ⑵取一個你自己喜歡的數(shù)作為_的值,求所對應的Y的`值; ⑶用含_的代數(shù)式表示Y; ⑷用含Y的代數(shù)式表示_; ⑸當_=-2,0時,所對應的Y值是多少; (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程。) (四)課堂小結,布置作業(yè) 1.這節(jié)課學哪些知識和方法? 2.你還有什么問題或想法需要和大家交流? 3.教材P82 教學設計說明: 1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。 2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。 3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。 教學目標: 1.知識與技能 結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系. 2.過程與方法 通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,推理能力和有條理地表達能力. 3.情感、態(tài)度與價值觀 聯(lián)系學生的生活環(huán)境、創(chuàng)設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發(fā)學生的學習興趣. 教學重點難點: 1.重點 讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題. 2.難點 探究三角形的三邊關系應用三邊關系解決生活中的實際問題. 教學設計: 本節(jié)課件設計了以下幾個環(huán)節(jié):回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業(yè). 第一環(huán)節(jié) 回顧與思考 1、如何表示線段、射線和直線? 2、如何表示一個角? 第二環(huán)節(jié) 情境引入 活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片. 活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養(yǎng)學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發(fā)學生學習數(shù)學的興趣 第三環(huán)節(jié) 三角形概念的講解 (1)你能從中找出四個不同的三角形嗎? (2)與你的同伴交流各自找到的三角形. (3)這些三角形有什么共同的特點? 通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項. 第四環(huán)節(jié) 探索三角形三邊關系 一:教材分析: 1:教材所處的地位和作用: 本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據(jù)應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節(jié)的重點和難點,同時也是本章節(jié)的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數(shù),幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養(yǎng)他們對數(shù)學的興趣 以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。 2:教育教學目標: (1)知識目標: (A)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。 (B)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。 (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。 (3)思想目標: 通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。 3:重點,難點以及確定的依據(jù): 根據(jù)題意尋找和;差;倍;分問題的相等關系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。 二:學情分析:(說學法) 1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數(shù)就直接進行列方程或在設未知數(shù)時,有單位卻忘記寫單位等。 2:學生在列方程解應用題時,可能存在三個方面的困難: (1)抓不準相等關系; (2)找出相等關系后不會列方程; (3)習慣于用小學算術解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關系。 3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。 4:學生在學習中可能習慣于用算術方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。 5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。 三:教學策略:(說教法) 如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作: 1:“讀(看)——議——講”結合法 2:圖表分析法 3:教學過程中堅持啟發(fā)式教學的原則 教學的理論依據(jù)是: 1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數(shù)式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。 2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數(shù),再根據(jù)相等關系列出需要的代數(shù)式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有_千克面粉”寫成“設原來有_”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“_字串7”“—15%_”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數(shù)設為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。 3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。 4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。 5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。 四:教學程序: (一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。 (二):教學簡要過程: 1:復習提問: (1):什么叫做等式? (2):等式與方程之間有哪些關系? (3):求_的15%的代數(shù)式。 (4):敘述代數(shù)式與方程的區(qū)別。 (理由是:通過復習加深學生對等式,方程,代數(shù)式之間關系的理解,有利于學生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。) 2:導入講授新課: (1):教具: 一塊小黑板,抄212例1題目及相對應的空表格。 左邊右邊 (2):新課引述: (3):講述課文212例1: (目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據(jù)題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。) 指導學生設原來重量為_千克。這里分析等式左邊:原來重量為_千克,運出重量為15%_千克,把以上填入表格左邊。字串7分析等式右邊:剩余重量為42500千克,填入表格右邊。 (目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數(shù)和列代數(shù)式,有利于降低列方程解應用題的難度) 把以上左邊和右邊的代數(shù)式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。 同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。 結合解題過程向學生介紹一元一次應用題解法的一般步驟: 課本215黑體字 3:課堂練習: 課文216練習1,2題 (目的是:讓學生通過適當?shù)哪7吕}的解題思想方法從而加深對本課的內容的理解掌握。) 4:新課鞏固: 學生對本節(jié)內容進行要小結: 列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。 (目的:讓學生加深對應用題的解法的認識和該注意事項的重視。) 5:作業(yè)布置: 課文221習題4-4(1)A組1,2,3題 (目的:在于檢驗學生對本節(jié)內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。) 五:板書設計: 4_4一元一次方程的應用: 例題:小黑板出示例1題目解:設原來有_千克面粉,那么運 相等關系:原來重量—運出重量=剩余重量出了15%_千克,依題意,得 等式左邊:等式右邊:_—15%_=42500 原來重量為_千克,剩余重量為42500千克。解這個方程: 運出重量為15%_千克。85/100__=42500 解一元一次方程的一般步驟:_=50000(千克) 小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。 問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)? 這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。 把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16, 因為左邊=右邊,所以x=3就是這個方程的解。 這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。 問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少? 同學們動手試一試,大家發(fā)現(xiàn)了什么問題? 同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦? 這正是我們本章要解決的問題。 三、鞏固練習 1、教科書第3頁練習1、2。 2、補充練習:檢驗下列各括號內的數(shù)是不是它前面方程的解。 (1)x-3(x+2)=6+x(x=3,x=-4) (2)2y(y-1)=3(y=-1,y=2) (3)5(x-1)(x-2)=0(x=0,x=1,x=2) 四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。 五、作業(yè)。 教學目標 1, 掌握相反數(shù)的概念,進一步理解數(shù)軸上的點與數(shù)的對應關系; 2, 通過歸納相反數(shù)在數(shù)軸上所表示的點的特征,培養(yǎng)歸納能力; 3, 體驗數(shù)形結合的思想。 教學難點 歸納相反數(shù)在數(shù)軸上表示的點的特征 知識重點 相反數(shù)的概念 教學過程(師生活動) 設計理念 設置情境 引入課題 問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類 4, -2,-5,+2 允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑В饾u得出5和-5,+2和-2分別歸類是具有較特征的分法。 (引導學生觀察與原點的距離) 思考結論:教科書第13頁的思考 再換2個類似的數(shù)試一試。 歸納結論:教科書第13頁的歸納。 以開放的形式創(chuàng)設情境,以學生進行討論,并培養(yǎng)分類的能力 培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想 深化主題提煉定義 給出相反數(shù)的定義 問題2:你怎樣理解相反數(shù)定義中的“只有符號不同”和“互為”一詞的含義?零的相反數(shù)是什么?為什么? 學生思考討論交流,教師歸納總結。 規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a 思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關系? 練一練:教科書第14頁第一個練習 體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。 深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。 強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義 給出規(guī)律 解決問題 問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎? 學生交流。 分別表示+5和-5的相反數(shù)是-5和+5 練一練:教科書第14頁第二個練習 利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法 小結與作業(yè) 課堂小結 1, 相反數(shù)的定義 2, 互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征 3, 怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)? 本課作業(yè) 1, 必做題 教科書第18頁習題1.2第3題 2, 選做題 教師自行安排 本課教育評注(課堂設計理念,實際教學效果及改進設想) 1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結合的思想. 2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結合的數(shù)學方法,數(shù)與形的相互轉化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法. 3,本教學設計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地. 學習目標 1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.毛 2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角. 重點難點 同位角、內錯角、同旁內角的特征 教學過程 一·導入 1.指出右圖中所有的鄰補角和對頂角? 2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎? 若都不是,請自學課本P6內容后回答它們各是什么關系的角? 二·問題導學 1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。 2. 如圖⑶是"直線 , 被直線 所截"形成的圖形 (1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。 (2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。 (3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。 3.找出圖⑶中所有的同位角、內錯角、同旁內角 4.討論與交流: (1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區(qū)別? (2)歸納總結同位角、內錯角、同旁內角的特征: 同位角:"F" 字型,"同旁同側" "三線八角" 內錯角:"Z" 字型,"之間兩側" 同旁內角:"U" 字型,"之間同側" 三·典題訓練 例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角? 小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角; 兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角; 自我檢測 ⒈如圖⑷,下列說法不正確的是( ) A、∠1與∠2是同位角 B、∠2與∠3是同位角 C、∠1與∠3是同位角 D、∠1與∠4不是同位角 ⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角. ⒊如圖⑹, 直線DE截AB, AC, 構成八個角: ① 指出圖中所有的同位角、內錯角、同旁內角. ②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角? ⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D . ①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角. ②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800) 相交線與平行線練習 課型:復習課: 備課人:徐新齊 審核人:霍紅超 一.基礎知識填空 1、如圖,∵AB⊥CD(已知) ∴∠BOC=90°( ) 2、如圖,∵∠AOC=90°(已知) ∴AB⊥CD( ) 3、∵a∥b,a∥c(已知) ∴b∥c( ) 4、∵a⊥b,a⊥c(已知) ∴b∥c( ) 5、如圖,∵∠D=∠DCF(已知) ∴_____//______( ) 6、如圖,∵∠D+∠BAD=180°(已知) ∴_____//______( ) (第1、2題) (第5、6題) (第7題) (第9題) 7、如圖,∵ ∠2 = ∠3( ) ∠1 = ∠2(已知) ∴∠1 = ∠3( ) ∴CD____EF ( ) 8、∵∠1+∠2 =180°,∠2+∠3=180°(已知) ∴∠1 = ∠3( ) 9、∵a//b(已知) ∴∠1=∠2( ) ∠2=∠3( ) ∠2+∠4=180°( ) 10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°. 二.基礎過關題: 1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。 證明:∵∠A=∠F ( 已知 ) ∴AC∥DF ( ) ∴∠D=∠ ( ) 又∵∠C=∠D ( 已知 ), ∴∠1=∠C ( 等量代換 ) ∴BD∥CE( )。 2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。 證明:∵∠B=∠BGD ( 已知 ) ∴AB∥CD ( ) ∵∠DGF=∠F;( 已知 ) ∴CD∥EF ( ) ∵AB∥EF ( ) ∴∠B + ∠F =180°( )。 3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.七年級數(shù)學教案萬能篇10
七年級數(shù)學教案萬能篇11
七年級數(shù)學教案萬能篇12
七年級數(shù)學教案萬能篇13
七年級數(shù)學教案萬能篇14
七年級數(shù)學教案萬能篇15
